南海北部陆架早—中中新世古珠江河道发育特征及汇流冲刷模式

林理娥, 卓海腾, 冯进, 李智高, 苏明, 王英民, 雷亚平, 林智轩, 杨荣南. 南海北部陆架早—中中新世古珠江河道发育特征及汇流冲刷模式[J]. 海洋地质与第四纪地质, 2023, 43(2): 31-44. doi: 10.16562/j.cnki.0256-1492.2022090601
引用本文: 林理娥, 卓海腾, 冯进, 李智高, 苏明, 王英民, 雷亚平, 林智轩, 杨荣南. 南海北部陆架早—中中新世古珠江河道发育特征及汇流冲刷模式[J]. 海洋地质与第四纪地质, 2023, 43(2): 31-44. doi: 10.16562/j.cnki.0256-1492.2022090601
LIN Li’e, ZHUO Haiteng, FENG Jin, LI Zhigao, SU Ming, WANG Yingmin, LEI Yaping, LIN Zhixuan, YANG Rongnan. Seismic sedimentary characteristics of the Ancient Pearl River system and its depositional model of confluence scours, northern shelf of the South China Sea in Early-Mid Miocene[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 31-44. doi: 10.16562/j.cnki.0256-1492.2022090601
Citation: LIN Li’e, ZHUO Haiteng, FENG Jin, LI Zhigao, SU Ming, WANG Yingmin, LEI Yaping, LIN Zhixuan, YANG Rongnan. Seismic sedimentary characteristics of the Ancient Pearl River system and its depositional model of confluence scours, northern shelf of the South China Sea in Early-Mid Miocene[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 31-44. doi: 10.16562/j.cnki.0256-1492.2022090601

南海北部陆架早—中中新世古珠江河道发育特征及汇流冲刷模式

  • 基金项目: 广东省自然科学基金“南海珠江口陆坡区上新世以来富砂质深水沉积体系及其水合物储层潜力”(2019A151501078);中海石油(中国)有限公司科研项目“珠江口盆地(东部)浅水区早-中中新世精细沉积相及多成因岩性圈闭潜力”(CCL2021SZPS0113);国家自然科学基金“南海珠江口陆架区第四纪高精度层序地层构型、时空差异及控制因素”(41706050)
详细信息
    作者简介: 林理娥(1999—),女,硕士研究生,海洋地质专业, E-mail:linle3@mail2.sysu.edu.cn
    通讯作者: 卓海腾(1986—),男,博士,副教授,主要从事层序地层学、沉积学和海洋地质学的教学和科研工作,E-mail:zhuoht3@mail.sysu.edu.cn
  • 中图分类号: P736

Seismic sedimentary characteristics of the Ancient Pearl River system and its depositional model of confluence scours, northern shelf of the South China Sea in Early-Mid Miocene

More Information
  • 河道体系是侵蚀和沉积物搬运的重要通道,控制了大陆边缘源汇体系中砂体总体的输送和分布格局,并可有效指示古代构造活动、物源供给、气候变迁和海平面变化等丰富地质信息。研究基于高分辨率的三维地震、钻测井资料,结合层序划分方法和地震沉积学综合分析手段,揭示了南海北部珠一坳陷早—中中新世古珠江分流河道体系的类型和展布特征,并且以典型层序为例精细揭示了海平面变化控制下河道类型由辫状向曲流的转换。同时,在研究区地震剖面上识别到多处异常下切现象,经研究可解释为辫状河道内的汇流冲刷,其典型特征为:① 下切深度局部增大;② 平面近似圆形或椭圆形;③ 内部为砂质充填。虽然汇流冲刷结构在地震剖面特征上与“传统”意义的下切谷极易混淆,但在沉积特征和成因上存在较大差别,因此,对它的识别有助于避免层序界面的错误判别,并且其后期充填的河道砂体具有局限分布的特点,易于在后期海侵泥岩的覆盖下形成潜在的岩性圈闭新类型。

  • 加载中
  • 图 1  珠江口盆地珠一坳陷构造区划图[3]

    Figure 1. 

    图 2  珠江口盆地珠一坳陷地层柱状图[2]

    Figure 2. 

    图 3  研究区NW-SE向地震剖面图及其层序地层界面划分

    Figure 3. 

    图 4  珠一坳陷NE-SW向早—中中新世的连井剖面图

    Figure 4. 

    图 5  研究区不同沉积相的岩芯照片

    Figure 5. 

    图 6  层序SQ17.1低位体系域发育的大型辫状河道体系

    Figure 6. 

    图 7  层序SQ15.0低位体系域发育的中型河道体系

    Figure 7. 

    图 8  层序SQ17.1高位体系域发育的小型河道体系

    Figure 8. 

    图 9  异常下切现象示意图

    Figure 9. 

    图 10  层序SQ17.1发育的大型辫状河道体系的异常下切作用的细节刻画

    Figure 10. 

    图 11  辫状河道汇流冲刷沉积模式图[31]

    Figure 11. 

    表 1  河道体系类型的划分

    Table 1.  Classification of the river system types

    河道类型河流宽度弯曲度地震反射特征地震地貌特征
    大型辫状分流河道平均宽度>10 km
    最大宽度可达30 km
    较低强-中振幅、好-中等连续、
    平行-亚平行反射
    内部河道交切明显,呈现“辫状”
    中型河道0.5~7 km中等强-中振幅、中等连续性辫状河道体系末端分支河;下切谷:
    延伸较远且地震剖面见明显下切
    小型曲流河道100~300 m较高单点状的强振幅且连续性较好单支河道孤立发育
    下载: 导出CSV

    表 2  汇流冲刷和下切谷的识别特征

    Table 2.  The distinctive features between confluence scour and incised valley

    平面形态特征下切深度充填特征岩性特征层序意义
    汇流冲刷近似圆形或椭圆形,分布局限,宽度约0.5~5 km中等单期充填中-粗河道砂岩无明显层序意义
    下切谷明显河道状,延伸距离远较大多期充填中-粗河道砂岩至海相泥岩,岩性多样层序边界标志
    下载: 导出CSV
  • [1]

    Bhattacharya J. Deltas and estuaries[M]//Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of Sediments and Sedimentary Rocks. Dordrecht: Springer, 2003: 195-203.

    [2]

    Zhuo H T, Wang Y M, Shi H S, et al. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: evidence from 3D seismic data [J]. Quaternary Science Reviews, 2015, 129: 128-146. doi: 10.1016/j.quascirev.2015.10.012

    [3]

    He M, Zhuo H T, Chen W T, et al. Sequence stratigraphy and depositional architecture of the Pearl River Delta system, northern South China Sea: an interactive response to sea level, tectonics and paleoceanography [J]. Marine and Petroleum Geology, 2017, 84: 76-101. doi: 10.1016/j.marpetgeo.2017.03.022

    [4]

    Fisk H N, Kolb C R, McFarlan E Jr, et al. Sedimentary framework of the modern mississippi delta [J]. Journal of Sedimentary Research, 1954, 24(2): 76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D

    [5]

    Wang Y R, Lin C S, Zhang Z T, et al. Sedimentary evolution and controlling factors of Early-Mid Miocene Deltaic systems in the Northern Pearl River Mouth Basin, South China Sea [J]. Scientific Reports, 2021, 11(1): 6134. doi: 10.1038/s41598-021-85369-1

    [6]

    李智高, 丁琳, 李小平, 等. 珠江口盆地珠一坳陷西部中新世早-中期沉积特征及控制因素[J]. 古地理学报, 2022, 24(1):99-111

    LI Zhigao, DING Lin, LI Xiaoping, et al. Sedimentary characteristics and controlling factors of the western Zhu I depression during the early-middle Miocene, Pearl River Mouth Basin [J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(1): 99-111.

    [7]

    Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: distributive fluvial systems [J]. Geology, 2010, 38(1): 39-42. doi: 10.1130/G30242.1

    [8]

    Gibling M R. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classifica-tion [J]. Journal of Sedimentary Research, 2006, 76(5): 731-770. doi: 10.2110/jsr.2006.060

    [9]

    Posamentier H W. Lowstand alluvial bypass systems: incised vs. unincised [J]. AAPG Bulletin, 2001, 85(10): 1771-1793.

    [10]

    Smith N D. Sedimentology and bar formation in the upper kicking horse river, a braided outwash stream [J]. The Journal of Geology, 1974, 82(2): 205-223. doi: 10.1086/627959

    [11]

    Hein F J, Walker R G. Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia [J]. Canadian Journal of Earth Sciences, 1977, 14(4): 562-570. doi: 10.1139/e77-058

    [12]

    Ashmore P, Parker G. Confluence scour in coarse braided streams [J]. Water Resources Research, 1983, 19(2): 392-402. doi: 10.1029/WR019i002p00392

    [13]

    Best J L, Ashworth P J. Scour in large braided rivers and the recognition of sequence stratigraphic boundaries [J]. Nature, 1997, 387(6630): 275-277. doi: 10.1038/387275a0

    [14]

    Dalrymple R W, Boyd R, Zaitlin B A. Incised - Valley Systems: Origin and Sedimentary Sequences[M]. Tulsa: SEPM Society for Sedimentary Geology, 1994.

    [15]

    Catuneanu O. Principles of Sequence Stratigraphy[M]. 2nd edn. Amsterdam: Elsevier, 2022.

    [16]

    Posarnentier H W, Allen G P. Siliciclastic Sequence Stratigraphy – Concepts and Applications[M]. SEPM Concepts in Sedimentology and Paleontology, 1999.

    [17]

    李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6):35-53

    LI Sanzhong, SUO Yanhui, LIU Xin, et al. Basic strcutural pattern and tectonic models of the South China Sea: problems, advances and controversies [J]. Marine Geology & Quaternary Geology, 2012, 32(6): 35-53.

    [18]

    朱筱敏, 董艳蕾, 曾洪流, 等. 中国地震沉积学研究现状和发展思考[J]. 古地理学报, 2020, 22(3):397-411

    ZHU Xiaomin, DONG Yanlei, ZENG Hongliu, et al. Research status and thoughts on the development of seismic sedimentology in China [J]. Journal of Palaeogeography, 2020, 22(3): 397-411.

    [19]

    Posamentier H W, Paumard V, Lang S C. Principles of seismic stratigraphy and seismic geomorphology I: extracting geologic insights from seismic data [J]. Earth-Science Reviews, 2022, 228: 103963. doi: 10.1016/j.earscirev.2022.103963

    [20]

    Van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key defini-tions[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-Level Changes: An Integrated Approach. Tulsa: SEPM Society for Sedimentary Geology, 1988.

    [21]

    Embry A F, Johannessen E P. T–R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup basin, Arctic Canada [J]. Norwegian Petroleum Society Special Publications, 1993, 2: 121-146.

    [22]

    Schumm S A. River response to baselevel change: implications for sequence stratigraphy [J]. The Journal of Geology, 1993, 101(2): 279-294. doi: 10.1086/648221

    [23]

    Zeng H L, Zhu X M, Liu Q H, et al. An alternative, seismic-assisted method of fluvial architectural-element analysis in the subsurface: neogene, Shaleitian area, Bohai Bay Basin, China [J]. Marine and Petroleum Geology, 2020, 118: 104435. doi: 10.1016/j.marpetgeo.2020.104435

    [24]

    梁旭, 范廷恩, 胡光义, 等. 海相辫状河三角洲沉积基准面旋回划分及砂体叠置样式分析: 以西江W油田珠江组为例[J]. 现代地质, 2018, 32(5):913-923

    LIANG Xu, FAN Ting’en, HU Guangyi, et al. Division of base-level cycles and superimposition of sandbodies in marine braided delta reservoir: a case study of Zhujiang Formation in Xijiang W Oilfield, Pearl River Estuary Basin [J]. Geoscience, 2018, 32(5): 913-923.

    [25]

    Talling P J. How and where do incised valleys form if sea level remains above the shelf edge? [J]. Geology, 1998, 26(1): 87-90. doi: 10.1130/0091-7613(1998)026<0087:HAWDIV>2.3.CO;2

    [26]

    Schumm S A, Ethridge F G. Origin, evolution and morphology of fluvial valleys[M]//Dalrymple R W, Boyd R, Zaitlin B A. Incised-Valley Systems: Origin and Sedimentary Sequences. Tulsa: SEPM, Special Publication, 1994: 13-26.

    [27]

    陈维涛, 孙珍, 何敏, 等. 珠江口盆地中中新世SQ14.8层序-沉积演化及其地质意义[J]. 大地构造与成矿学, 2021, 45(5):875-891 doi: 10.16539/j.ddgzyckx.2021.05.004

    CHEN Weitao, SUN Zhen, HE Min, et al. The Mid-Miocene stratigraphic-depositional evolution recorded by the SQ14.8 layer in Pearl River Mouth Basin and its geological significances [J]. Geotectonica et Metallogenia, 2021, 45(5): 875-891. doi: 10.16539/j.ddgzyckx.2021.05.004

    [28]

    Miall A D. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin, based on seismic time-slice analy-sis [J]. AAPG Bulletin, 2002, 86(7): 1201-1216.

    [29]

    Smith G H S, Nicholas A P, Best J L, et al. The sedimentology of river confluences [J]. Sedimentology, 2019, 66(2): 391-407. doi: 10.1111/sed.12504

    [30]

    Ardies G W, Dalrymple R W, Zaitlin B A. Controls on the geometry of incised valleys in the Basal Quartz unit (Lower cretaceous), Western Canada Sedimentary Basin [J]. Journal of Sedimentary Research, 2002, 72(5): 602-618. doi: 10.1306/032101720602

    [31]

    Ullah M S, Bhattacharya J P, Dupre W R. Confluence scours versus incised valleys: examples from the cretaceous ferron notom delta, southeastern utah, USA [J]. Journal of Sedimentary Research, 2015, 85(5): 445-458. doi: 10.2110/jsr.2015.34

    [32]

    Huismans Y, Koopmans H, Wiersma A, et al. Lithological control on scour hole formation in the Rhine-Meuse Estuary [J]. Geomorphology, 2021, 385: 107720. doi: 10.1016/j.geomorph.2021.107720

    [33]

    Rhoads B L, Sukhodolov A N. Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities [J]. Water Resources Research, 2001, 37(9): 2393-2410. doi: 10.1029/2001WR000316

    [34]

    Best J L. Flow dynamics at river channel confluences: implications for sediment transport and bed morphology[M]//Ethridge F G, Flores R M, Harvey M D. Recent Developments in Fluvial Sedimentology. Tulsa: SEPM, 1987: 27-35.

    [35]

    Snedden J W. Channel-body basal scours: observations from 3D seismic and importance for subsurface reservoir connectivity [J]. Marine and Petroleum Geology, 2013, 39(1): 150-163. doi: 10.1016/j.marpetgeo.2012.08.013

    [36]

    Fielding C R. Sedimentology and stratigraphy of large river deposits: recognition in the ancient record, and distinction from ‘incised valley fills’[M]//Gupta A. Large Rivers: Geomorphology and Management. Chichester: John Wiley & Sons, Ltd, 2007: 97-113.

    [37]

    杜家元, 施和生, 丁琳, 等. 珠江口盆地(东部)地层岩性油气藏勘探有利区域分析[J]. 中国海上油气, 2014, 26(3):30-36,55

    DU Jiayuan, SHI Hesheng, DING Lin, et al. An analysis of favorable exploration areas for stratigraphic-lithologic hydrocarbon accumulation in the eastern Pearl River Mouth Basin [J]. China Offshore Oil and Gas, 2014, 26(3): 30-36,55.

    [38]

    Miall A D. How do we identify big rivers? And how big is big? [J]. Sedimentary Geology, 2006, 186(1-2): 39-50. doi: 10.1016/j.sedgeo.2005.10.001

    [39]

    Ashworth P J, Lewin J. How do big rivers come to be different? [J]. Earth-Science Reviews, 2012, 114(1-2): 84-107. doi: 10.1016/j.earscirev.2012.05.003

    [40]

    Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies [J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002

    [41]

    张向涛, 向绪洪, 赵梦, 等. 珠江水系演化与东亚地形倒转的耦合关系[J]. 地球科学, 2022, 47(7):2410-2420 doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207009

    ZHANG Xiangtao, XIANG Xuhong, ZHAO Meng, et al. Coupling relationship between Pearl River water system evolution and East Asian terrain inversi-on [J]. Earth Science, 2022, 47(7): 2410-2420. doi: 10.3321/j.issn.1000-2383.2022.7.dqkx202207009

    [42]

    郑荣才, 马奇科, 杨宝泉, 等. 白云凹陷珠江组深水扇砂岩储层特征及控制因素[J]. 成都理工大学学报:自然科学版, 2012, 39(5):455-462

    ZHENG Rongcai, MA Qike, YANG Baoquan, et al. Characteristics of Miocene Zhujiang Formation submarine fan sandstone reservoirs in Baiyun sag, Pearl River Mouth Basin, China [J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2012, 39(5): 455-462.

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1168
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2022-09-06
修回日期:  2022-10-10
录用日期:  2022-10-10
刊出日期:  2023-04-28

目录