西北太平洋采薇海山富钴结壳矿物学和地球化学特征

王琳璋, 曾志刚. 西北太平洋采薇海山富钴结壳矿物学和地球化学特征[J]. 海洋地质与第四纪地质, 2023, 43(5): 36-49. doi: 10.16562/j.cnki.0256-1492.2022091901
引用本文: 王琳璋, 曾志刚. 西北太平洋采薇海山富钴结壳矿物学和地球化学特征[J]. 海洋地质与第四纪地质, 2023, 43(5): 36-49. doi: 10.16562/j.cnki.0256-1492.2022091901
WANG Linzhang, ZENG Zhigang. Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 36-49. doi: 10.16562/j.cnki.0256-1492.2022091901
Citation: WANG Linzhang, ZENG Zhigang. Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 36-49. doi: 10.16562/j.cnki.0256-1492.2022091901

西北太平洋采薇海山富钴结壳矿物学和地球化学特征

  • 基金项目: 国家自然科学基金项目“深海界面过程和化能生态系统”(42221005),“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213);中国科学院战略性先导科技专项“热液/冷泉区岩浆物质贡献与流体化学过程”(XDB42020402);泰山学者工程专项(ts201511061)
详细信息
    作者简介: 王琳璋(1995—),男,博士研究生,主要从事海洋资源矿产的研究,E-mail:wanglinzhang@ qdio.ac.cn
    通讯作者: 曾志刚(1968—),男,研究员,主要从事海底热液活动研究,E-mail:zgzeng@qdio.ac.cn
  • 中图分类号: P736.4

Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean

More Information
  • 富钴结壳是一种富含Mn、Co、Ni和稀土元素(镧系元素加钇,简称REY)等元素的海底矿产资源。本文研究的富钴结壳样品是“科学”号在2018年HOBAB5航次于西北太平洋采薇海山的山顶边缘上通过电视抓斗获得的。利用扫描电镜、X射线衍射仪(XRD)、电感耦合等离子体发射光谱仪(ICP-OES)和电感耦合等离子体质谱仪(ICP-MS)分析了富钴结壳的显微构造、矿物学特征和地球化学特征,并探讨了其成因类型和形成机制。富钴结壳的结构从内到外可分为土黄色的疏松层(C8-5)、黑色铁锰致密层(C8-2、C8-3和C8-4)和发育葡萄状球体的粗糙表面(C8-1)。土黄色疏松层孔隙度较高,主要组成矿物为水羟锰矿、石英、钙长石、钠长石、钙十字沸石和钡镁锰矿,Mn的含量较低,Al的含量较高。黑色的铁锰致密层孔隙度较低,呈柱状构造,主要组成矿物为水羟锰矿、石英、钙长石和钠长石,Al含量有所下降,Mn含量升高, 说明陆源物质的供应逐渐变少。在富钴结壳的生长后期,其主要显微构造由柱状构造向斑杂构造转变,二者的过渡区域为铁锰氧化物与富Si碎屑物质组成的层状构造。富钴结壳各层位的Mn/Fe比值为1.16~1.85,且各层位Ce呈正异常,Y呈负异常,以上特征表明富钴结壳为水成成因型,其金属元素来源于氧化性海水,未受到热液活动的影响。依据富钴结壳的年代学数据,可知从渐新世末期到上新世中期,富钴结壳的生长过程一直受控于太平洋深层水。Co/(Fe+Mn)和Co/(Ni+Cu)的不断升高表明富钴结壳一直在氧化性较高的海水环境中生长。相较于其他大洋和海区,采薇海山富钴结壳具有高含量的Co、Ni和REY,具有极高的经济价值和开采价值。

  • 加载中
  • 图 1  研究区位置以及现代大洋环流体系

    Figure 1. 

    图 2  采薇海山富钴结壳样品手标本照片

    Figure 2. 

    图 3  采薇海山富钴结壳显微构造

    Figure 3. 

    图 4  采薇海山富钴结壳各层位XRD图谱

    Figure 4. 

    图 5  采薇海山富钴结壳生长剖面的元素含量和比值图

    Figure 5. 

    图 6  采薇海山富钴结壳后太古宙澳大利亚页岩标准化稀土元素配分图

    Figure 6. 

    图 7  富钴结壳各层位成因类型判别三元图

    Figure 7. 

    图 8  富钴结壳各层位成因类型稀土元素判别图

    Figure 8. 

    图 9  本文富钴结壳与其他海区富钴结壳关于有经济价值的元素对比图

    Figure 9. 

    表 1  采薇海山富钴结壳各层位地球化学数据

    Table 1.  Geochemical data of the layers of the Co-rich crust on Caiwei Guyot

    C8-1C8-2C8-3C8-4C8-5
    常量元素/%Mn13.513.318.516.815.0
    Fe11.69.2410.011.112.6
    Al2.101.670.641.602.68
    Mn/Fe1.161.441.851.521.19
    Na1.621.461.881.711.73
    K0.610.410.360.480.60
    Ca1.761.612.001.971.90
    Mg1.210.941.111.191.43
    Ti1.110.760.961.161.20
    P0.720.620.630.630.80
    微量元素/10−6As204171189169152
    B189158178163191
    Ba10931096136013121307
    Be4.764.154.754.775.61
    Bi18.119.322.219.415.2
    Cd6.125.516.585.634.31
    Co48054396531138582534
    Cr10.29.5511.912.413.7
    Cs0.470.320.390.501.04
    Cu4796158288441080
    Ga6.035.516.716.497.35
    Hf6.746.897.828.9312.5
    Li6.322.913.074.0810.2
    Mo554559583449389
    Nb43.944.955.855.858.5
    Ni30123411422437403454
    Pb19971747171215601321
    Rb7.086.056.947.5210.7
    Sc7.616.066.557.0110.9
    Sr13621215141112841159
    Ta0.500.500.570.580.58
    Th16.210.89.469.078.74
    Tl71.466.365.653.959.9
    U13.311.912.310.89.04
    V620537592528487
    W84.683.693.67660.3
    Zn466514587559597
    Zr537501615633761
    稀土元素/10−6La233197210203200
    Ce605590740757580
    Pr41.533.736.935.934.6
    Nd183148159155149
    Sm37.930.332.232.030.6
    Eu9.537.688.007.987.63
    Gd46.938.940.340.137.9
    Tb7.145.845.925.805.56
    Dy40.533.733.631.930.9
    Y179147155139158
    Ho10.08.478.337.887.64
    Er26.022.322.020.619.9
    Tm4.123.623.593.323.23
    Yb25.522.122.220.319.9
    Lu4.183.633.643.333.34
    ΣLREE11101007118611911001
    ΣHREE164139139133128
    LREE/HREE6.767.278.518.947.80
    ΣREY14541293148014631288
    Co/(Fe+Mn)19119518613891.8
    Co/(Cu+Ni)1.381.091.050.840.56
    生长速率(mm/Ma)1.462.101.761.370.65
    下载: 导出CSV

    表 2  富钴结壳元素之间相关系数矩阵

    Table 2.  Element Correlation matrix of the Co-rich crust

    MnFeAlMn/FeKCaMgTiLiBeCoNiZrBaGr
    Mn1
    Fe−0.0931
    Al−0.6780.7411
    Mn/Fe0.808−0.659−0.950*1
    K−0.5350.8760.892*−0.923*1
    Ca0.894*0.356−0.3100.460−0.1051
    Mg0.0900.970**0.637−0.4980.7440.5041
    Ti0.1940.922*0.493−0.4100.7100.6110.908*1
    Li−0.2780.921*0.849−0.7380.8470.1240.912*0.7091
    Be0.1970.898*0.547−0.3680.6100.5590.977**0.8250.887*1
    Co0.219−0.674−0.7950.568−0.567−0.086−0.699−0.534−0.775−0.6991
    Ni0.928*−0.373−0.7740.925*−0.7730.691−0.163−0.139−0.444−0.0080.2581
    Cu0.5060.4420.1770.1280.0290.6440.6260.4610.4840.744−0.6940.487
    Zn0.7090.172−0.1540.444−0.2850.7100.3960.2490.2070.556−0.4280.742
    Zr0.3980.7250.378−0.1200.3440.6720.8620.7170.7200.931*−0.7440.2651
    Ba0.900*0.226−0.3170.547−0.2690.932*0.4270.4290.1050.543−0.2200.8130.7491
    Gr−0.044−0.956*−0.6960.528−0.738−0.456−0.987**−0.884*−0.920*−0.965**0.8040.180−0.886*−0.4191
    下载: 导出CSV

    表 3  富钴结壳元素因子分析

    Table 3.  Element factor analysis of the Co-rich crust

    因子1因子2因子3
    Mn−0.180−0.2310.956
    Fe0.1590.9590.166
    Al−0.0490.849−0.513
    Na0.0560.1480.974
    K0.3450.868−0.284
    Ca−0.0860.1940.967
    Mg0.0240.9440.328
    Ti0.1640.7910.428
    P0.1060.959−0.091
    Li0.0070.990−0.050
    Be−0.0930.9010.406
    B0.5000.7450.226
    Sc−0.1490.9720.072
    V0.887−0.4400.103
    Cr−0.4110.6430.646
    Co0.569−0.7980.142
    Ni−0.393−0.4300.792
    Cu−0.6750.5040.524
    Zn−0.6740.2160.666
    Ga−0.2420.6810.673
    As0.904−0.4220.060
    Rb−0.2930.9220.222
    Sr0.697−0.5010.513
    Zr−0.4080.7470.520
    Nb−0.5310.3720.761
    Mo0.505−0.797−0.096
    Cd0.589−0.7440.316
    Cs−0.2960.9400.113
    Ba−0.4050.1510.901
    Hf−0.5290.7990.275
    Ta−0.4920.3210.806
    W0.472−0.8530.147
    Tl0.706−0.216−0.383
    Pb0.803−0.521−0.290
    Bi0.134−0.8980.417
    Th0.895−0.003−0.442
    U0.761−0.635−0.121
    La0.9950.0660.018
    Ce−0.064−0.4580.787
    Pr0.9800.0850.104
    Nd0.9890.056−0.009
    Sm0.9750.085−0.040
    Eu0.9700.072−0.122
    Gd0.971−0.016−0.125
    Tb0.963−0.029−0.238
    Dy0.945−0.114−0.307
    Y0.8440.387−0.173
    Ho0.923−0.149−0.355
    Er0.913−0.212−0.347
    Tm0.902−0.260−0.332
    Yb0.917−0.231−0.302
    Lu0.921−0.165−0.314
    方差贡献41.1%34.8%20.7%
    下载: 导出CSV
  • [1]

    Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 239-279.

    [2]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [3]

    Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008

    [4]

    Fitzgerald C E, Gillis K M. Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean [J]. Marine Geology, 2006, 225(1-4): 145-156. doi: 10.1016/j.margeo.2005.09.005

    [5]

    Pelleter E, Fouquet Y, Etoubleau J, et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific) [J]. Ore Geology Reviews, 2017, 87: 126-146. doi: 10.1016/j.oregeorev.2016.09.014

    [6]

    Halbach P. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts [J]. Geologische Rundschau, 1986, 75(1): 235-247. doi: 10.1007/BF01770191

    [7]

    Hein J R, Schwab W C, Davis A. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands [J]. Marine Geology, 1988, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2

    [8]

    Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [9]

    McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7

    [10]

    Jiang X D, Sun X M, Guan Y, et al. Biomineralisation of the ferromanganese crusts in the Western Pacific Ocean [J]. Journal of Asian Earth Sciences, 2017, 136: 58-67. doi: 10.1016/j.jseaes.2017.01.025

    [11]

    Sujith P P, Gonsalves M J B D. Ferromanganese oxide deposits: geochemical and microbiological perspectives of interactions of cobalt and nickel [J]. Ore Geology Reviews, 2021, 139: 104458. doi: 10.1016/j.oregeorev.2021.104458

    [12]

    Guo B B, Wang W Q, Shu Y Q, et al. Observed deep anticyclonic cap over Caiwei Guyot [J]. Journal of Geophysical Research:Oceans, 2020, 125(10): e2020JC016254.

    [13]

    杨永, 何高文, 杨胜雄, 等. 采薇平顶海山群底质类型分布研究[J]. 矿物学报, 2015, 35(S1):801-802

    YANG Yong, HE Gaowen, YANG Shengxiong, et al. Study on the distribution of sediment types of Caiwei Seamount Group [J]. Acta Mineralogica Sinica, 2015, 35(S1): 801-802.

    [14]

    高晶晶, 刘季花, 张辉, 等. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3):87-99 doi: 10.16562/j.cnki.0256-1492.2021071302

    GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302

    [15]

    韦振权, 何高文, 邓希光, 等. 大洋富钴结壳资源调查与研究进展[J]. 中国地质, 2017, 44(3):460-472

    WEI Zhenquan, HE Gaowen, DENG Xiguang, et al. The progress in the study and survey of oceanic cobalt-rich crust resources [J]. Geology in China, 2017, 44(3): 460-472.

    [16]

    王彦美, 张伙带, 刘季花, 等. 麦哲伦海山区采薇海山富钴结壳伴生有用元素含量变化及空间分布特征[J]. 海洋地质与第四纪地质, 2016, 36(2):65-74

    WANG Yanmei, ZHANG Huodai, LIU Jihua, et al. Abundances and spatial distributions of associated useful elements in Co-rich crusts from Caiwei Seamount in Magellan Seamounts [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 65-74.

    [17]

    中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录(2016)[M]. 北京: 海洋出版社, 2016: 30-57

    Chinese Ocean Mineral Resources Research and Development Association Office. Chinese Gazetteer of Undersea Features on the International Seabed (2016)[M]. Beijing: China Ocean Press, 2016: 30-57.

    [18]

    Epp D. Possible perturbations to hotspot traces and implications for the origin and structure of the Line Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B13): 11273-11286. doi: 10.1029/JB089iB13p11273

    [19]

    Lonsdale P. Geography and history of the Louisville Hotspot Chain in the southwest Pacific [J]. Journal of Geophysical Research, 1988, 93(B4): 3078-3104. doi: 10.1029/JB093iB04p03078

    [20]

    Wessel P, Kroenke L. A geometric technique for relocating hotspots and refining absolute plate motions [J]. Nature, 1997, 387(6631): 365-369. doi: 10.1038/387365a0

    [21]

    Koppers A A P, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1089.

    [22]

    Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8

    [23]

    Gordon A L, Visbeck M, Huber B. Export of Weddell Sea deep and bottom water [J]. Journal of Geophysical Research:Oceans, 2001, 106(C5): 9005-9017. doi: 10.1029/2000JC000281

    [24]

    张亚南, 仲义, 陈艇, 等. 北太平洋大洋钻探研究进展: 古海洋与古气候[J]. 海洋地质与第四纪地质, 2022, 42(5):16-32

    ZHANG Yanan, ZHONG Yi, CHEN Ting, et al. Research progress of ocean drilling in the North Pacific Ocean: paleoceanography and paleoclimate [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 16-32.

    [25]

    任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院海洋研究所博士学位论文, 2005

    REN Xiangwen. The Metallogenic system of co-rich manganese crusts in western pacific[D]. Doctor Dissertation of The Institute of Oceanology, Chinese Academy of Sciences, 2005.

    [26]

    Yeo I A, Dobson K, Josso P, et al. Assessment of the mineral resource potential of Atlantic ferromanganese crusts based on their growth history, microstructure, and texture [J]. Minerals, 2018, 8(8): 327. doi: 10.3390/min8080327

    [27]

    张振国, 杜远生, 吴长航, 等. 南海西北陆缘大型多金属结核的生长过程及其对晚新生代古海洋环境变化的响应[J]. 中国科学:地球科学, 2013, 56(3):453-463 doi: 10.1007/s11430-012-4535-8

    ZHANG Z G, DU Y S, WU C H, et al. Growth of a polymetallic nodule from the Northwestern continental margin of the South China Sea and its response to changes in the paleoceanographical environment of the late Cenozoic [J]. Science China Earth Sciences, 2013, 56(3): 453-463. doi: 10.1007/s11430-012-4535-8

    [28]

    Josso P, Rushton J, Lusty P, et al. Late cretaceous and Cenozoic paleoceanography from North-East Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122

    [29]

    Giovanoli R. Vernadite is random-stacked birnessite: a discussion of the paper by F. V. Chukhrov et al. : "Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits" [Mineralium Deposita 14, 249–261 (1979)] [J]. Mineralium Deposita, 1980, 15(2): 251-253.

    [30]

    Villalobos M, Lanson B, Manceau A, et al. Structural model for the biogenic Mn oxide produced by Pseudomonas putida [J]. American Mineralogist, 2006, 91(4): 489-502. doi: 10.2138/am.2006.1925

    [31]

    Grangeon S, Lanson B, Lanson M, et al. Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study [J]. Mineralogical Magazine, 2008, 72(6): 1279-1291. doi: 10.1180/minmag.2008.072.6.1279

    [32]

    Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 65-141.

    [33]

    Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163. doi: 10.1016/j.margeo.2018.12.006

    [34]

    Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite [J]. American Mineralogist, 2003, 88(1): 142-150. doi: 10.2138/am-2003-0117

    [35]

    Feng X H, Tan W F, Liu F, et al. Synthesis of todorokite at atmospheric pressure [J]. Chemistry of Materials, 2004, 16(22): 4330-4336. doi: 10.1021/cm0499545

    [36]

    Selley R C, Cocks L R M, Plimer I R. Encyclopedia of Geology[M]. Boston: Academic Press, 2005: 591-600.

    [37]

    Wang L Z, Zeng Z G. The geochemical features and genesis of ferromanganese deposits from Caiwei Guyot, Northwestern Pacific Ocean [J]. Journal of Marine Science and Engineering, 2022, 10(9): 1275. doi: 10.3390/jmse10091275

    [38]

    Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 312.

    [39]

    McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [40]

    Addy S K. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic [J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1105-1115. doi: 10.1016/0016-7037(79)90097-8

    [41]

    Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases [J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1007-1022. doi: 10.1016/0016-7037(74)90002-7

    [42]

    Amakawa H, Ingri J, Masuda A, et al. Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas, and the Gulf of Bothnia [J]. Earth and Planetary Science Letters, 1991, 105(4): 554-565. doi: 10.1016/0012-821X(91)90192-K

    [43]

    韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2003: 190-193

    HAN Yinwen, MA Zhendong. Geochemistry[M]. Beijing: Geology Press, 2003: 190-193.

    [44]

    Li Y H. Distribution patterns of the elements in the ocean: a synthesis [J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3223-3240. doi: 10.1016/0016-7037(91)90485-N

    [45]

    Knaack D R, Sullivan K, Brown D J, et al. Geochemical and mineralogical composition of ferromanganese precipitates from the southern Mariana arc: evaluation, formation, and implications [J]. Chemical Geology, 2021, 568: 120132. doi: 10.1016/j.chemgeo.2021.120132

    [46]

    Marino E, González F J, Kuhn T, et al. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island Seamounts and their influence in the metal recovery rate with hydrometallurgical methods [J]. Minerals, 2019, 9(7): 439. doi: 10.3390/min9070439

    [47]

    Halbach P, Hebisch U, Scherhag C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control [J]. Chemical Geology, 1981, 34(1-2): 3-17. doi: 10.1016/0009-2541(81)90067-X

    [48]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [49]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [50]

    Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas [J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0

    [51]

    Segl M, Mangini A, Bonani G, et al. 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation [J]. Nature, 1984, 309(5968): 540-543. doi: 10.1038/309540a0

    [52]

    Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    [53]

    Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130. doi: 10.1016/j.oregeorev.2018.02.026

    [54]

    Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186

    [55]

    Hein J R, Conrad T A, Frank M, et al. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10022.

    [56]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [57]

    Wu G H, Zhou H Y, Zhang H S, et al. New index of ferromanganese crusts reflecting oceanic environmental oxidation [J]. Science in China Series D:Earth Sciences, 2007, 50(3): 371-384. doi: 10.1007/s11430-007-2011-7

    [58]

    Aplin A, Michard A, Albarède F. 143Nd/144Nd in Pacific ferromanganese encrustations and nodules [J]. Earth and Planetary Science Letters, 1986, 81(1): 7-14. doi: 10.1016/0012-821X(86)90096-8

    [59]

    Banakar V K, Borole D V. Depth profiles of 230Thexcess, transition metals and mineralogy of ferromanganese crusts of the Central Indian Basin and implications for palaeoceanographic influence on crust genesis [J]. Chemical Geology, 1991, 94(1): 33-44. doi: 10.1016/S0009-2541(10)80015-4

    [60]

    Liu Q, Huo Y Y, Wu Y H, et al. Bacterial community on a Guyot in the northwest Pacific Ocean influenced by physical dynamics and environmental variables [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2883-2897. doi: 10.1029/2019JG005066

    [61]

    Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 110: 1-19. doi: 10.1016/j.dsr.2015.11.006

    [62]

    Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9

    [63]

    Yeo I A, Howarth S A, Spearman J, et al. Distribution of and hydrographic controls on ferromanganese crusts: tropic Seamount, Atlantic [J]. Ore Geology Reviews, 2019, 114: 103131. doi: 10.1016/j.oregeorev.2019.103131

    [64]

    Takahashi Y, Manceau A, Geoffroy N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 984-1008. doi: 10.1016/j.gca.2006.11.016

    [65]

    Schnitker D. North Atlantic oceanography as possible cause of Antarctic glaciation and eutrophication [J]. Nature, 1980, 284(5757): 615-616. doi: 10.1038/284615a0

    [66]

    Donnelly T W. Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments [J]. Geology, 1982, 10(9): 451-454. doi: 10.1130/0091-7613(1982)10<451:WCDACD>2.0.CO;2

    [67]

    Kennett J P. Paleo-oceanography: global ocean evolution [J]. Reviews of Geophysics, 1983, 21(5): 1258-1274. doi: 10.1029/RG021i005p01258

    [68]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14.

    [69]

    Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment [J]. Ore Geology Reviews, 2017, 87: 25-40. doi: 10.1016/j.oregeorev.2016.09.010

    [70]

    Usui A, Nishi K, Sato H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500m [J]. Ore Geology Reviews, 2017, 87: 71-87. doi: 10.1016/j.oregeorev.2016.09.032

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1087
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2022-09-19
修回日期:  2022-12-08
刊出日期:  2023-10-28

目录