冷泉环境自生矿物多硫同位素特征及应用

张覃谊, 邬黛黛, 刘丽华. 冷泉环境自生矿物多硫同位素特征及应用[J]. 海洋地质与第四纪地质, 2022, 42(3): 62-75. doi: 10.16562/j.cnki.0256-1492.2022112201
引用本文: 张覃谊, 邬黛黛, 刘丽华. 冷泉环境自生矿物多硫同位素特征及应用[J]. 海洋地质与第四纪地质, 2022, 42(3): 62-75. doi: 10.16562/j.cnki.0256-1492.2022112201
ZHANG Qinyi, WU Daidai, LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 62-75. doi: 10.16562/j.cnki.0256-1492.2022112201
Citation: ZHANG Qinyi, WU Daidai, LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 62-75. doi: 10.16562/j.cnki.0256-1492.2022112201

冷泉环境自生矿物多硫同位素特征及应用

  • 基金项目: 广东省基础与应用基础研究基金“南海北部冷泉区甲烷厌氧氧化(AOM)作用耦合模式研究”(2021A1515011509);广州市科技计划“南海北部冷泉区有孔虫特征研究及其对甲烷渗漏的指示”(201904010311);广东省促进经济发展专项资金“南海天然气水合物成藏特性研究(海洋经济发展用途)”(GDME-2018D002)
详细信息
    作者简介: 张覃谊(1997—),男,硕士研究生,主要从事海洋地质学和地球化学研究,E-mail:moshushi1997@mail.ustc.edu.cn
    通讯作者: 邬黛黛(1981—),女,博士,研究员,主要从事海洋地质和地球化学研究,E-mail:wudd@ms.giec.ac.cn
  • 中图分类号: P736

Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment

More Information
  • 正常海相沉积物中普遍存在有机质硫酸盐还原作用(OSR),但在冷泉区,硫酸盐还原-甲烷厌氧氧化作用(SR-AOM)则占据主导地位。如何区分这两种硫酸盐还原途径,对研究极端环境下的生物地球化学过程具有重要意义。为进一步概括、了解冷泉区与SR-AOM相关的自生矿物的多硫同位素特征及其建模应用,在广泛调研国内外与SR-AOM相关的多硫同位素研究成果的基础上,综述了SR-AOM成因的黄铁矿和冷泉重晶石的多硫同位素特征。在此基础上,分别针对黄铁矿和冷泉重晶石概括已被广泛应用的稳定状态盒模型和1-D反应转移模型。SR-AOM成因的黄铁矿相比OSR成因的黄铁矿具有更高的δ34S值和Δ33S值。同时,SR-AOM成因的黄铁矿的δ34S值和Δ33S值呈负相关性,不同于OSR的正相关性。此外,冷泉重晶石的负Δ33S-δ´34S相关性与受OSR控制的孔隙水硫酸盐的正相关性亦明显不同。在冷泉环境中,与SR-AOM相关的自生矿物多硫同位素特征能有效示踪该极端条件下硫同位素的演化,且有利于区分SR-AOM和OSR,这为研究极端环境下的生物地球化学过程和示踪潜在的天然气水合物矿藏提供了有效依据。

  • 加载中
  • 图 1  微生物细胞内硫酸盐还原作用硫的代谢过程及硫同位素分馏机理示意图

    Figure 1. 

    图 2  不同甲烷通量条件下形成的黄铁矿的硫同位素组分示意图 [73]

    Figure 2. 

    图 3  黄铁矿/CRS和孔隙水硫酸盐/CASδ34S-Δ33S数据对比

    Figure 3. 

    图 4  冷泉环境生物地球化学循环示意图

    Figure 4. 

    图 5  OSR控制的孔隙水硫酸盐剖面和冷泉重晶石的Δ33S-δ´34S轨迹比较[66]

    Figure 5. 

    图 6  SR-AOM盒状模型示意图

    Figure 6. 

    图 7  现代沉积物中冷泉重晶石的Δ33S和δ´34S值

    Figure 7. 

    表 1  全球范围内不同海域沉积物黄铁矿的δ34S和Δ33S值

    Table 1.  The δ34S values and some corresponding Δ33S values of pyrite in sediments from different sea areas around the world

    地点点位δ34S/‰Δ33S/‰研究人员
    北海及巴伦支海
    −23.4‰~14.8‰(均值为−6.9‰±9.7‰)
    −0.06‰~0.16‰Antoine Crémière[23]
    秘鲁北海岸及南加州海岸–35‰±5‰0.145‰±0.025‰Rosalie Tostevin[40]
    南海台西南盆地DH-CL11
    HD109

    −44.1‰~−2.9‰
    −43.8‰~−1.6‰

    0.02‰~0.17‰
    −0.03‰~0.14‰
    Lin Zhiyong[17]
    奥尔胡斯湾M24−35‰~−22‰André Pellerin[78]
    南海北部F
    ROV1及ROV2
    −16.5‰~16.4‰(均值为−1.8‰)
    –22.5‰~6.6‰(均值为−11.6‰)
    Gong Shanggui[73]
    南海台西南盆地973-4–46.0‰~48.6‰(均值为−2.4‰)−0.052‰~0.2‰Liu Jiarui[14]
    东海EC2005−36.5‰~75.7‰ (均值为−4.4‰)Liu Xiting[87]
    南海琼东南盆地Q6−51.7‰~−20.7‰(均值为−36.7 ‰)Miao Xiaoming[30]
    南加州海岸−25.7‰~−37.7‰Morgan Reed Raven[31]
    南海神狐海域HS148
    HS217
    −40.5‰~41.0‰
    −47.6‰~16.4‰
    Lin Zhiyong[60]
    墨西哥湾−14‰~−38.7‰(均值为−27.4‰)Sajjad A. Akam[32]
    南海珠江口盆地2A−51.3‰~−27.8‰Lin Qi[59]
    南海台西南盆地973-4−50.4‰~37.2‰
    秘鲁海岸ODP 1229E−32.4‰~2.1‰Virgil Pasquier[98]
    南海神狐海域HS328−46.6‰~−12.3‰Zhang Mei[99]
    下载: 导出CSV
  • [1]

    Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2005, 75(1-4): 59-83.

    [2]

    Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates [J]. Reviews of Geophysics, 2017, 55(1): 126-168. doi: 10.1002/2016RG000534

    [3]

    Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment [J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 299-327. doi: 10.1146/annurev.ea.11.050183.001503

    [4]

    Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change [J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    [5]

    Johnson J E, Goldfinger C, Suess E. Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin [J]. Marine Geology, 2003, 202(1-2): 79-120. doi: 10.1016/S0025-3227(03)00268-8

    [6]

    Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018

    [7]

    Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601. doi: 10.1073/pnas.0800885105

    [8]

    Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0

    [9]

    叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学-中国地质大学学报, 2013, 38(6):1299-1308 doi: 10.3799/dqkx.2013.127

    YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the Northern South China Sea since the Late Younger Dryas [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1299-1308. doi: 10.3799/dqkx.2013.127

    [10]

    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    [11]

    Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2767-2779. doi: 10.1016/j.gca.2005.01.002

    [12]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [13]

    Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. 2nd ed. Berlin, Heidelberg: Springer, 2006: 271-309.

    [14]

    Liu J R, Pellerin A, Izon G, et al. The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron [J]. Earth and Planetary Science Letters, 2020, 536: 116165. doi: 10.1016/j.jpgl.2020.116165

    [15]

    Jørgensen B B, Nelson D C. Sulfide oxidation in marine sediments: Geochemistry meets microbiology[M]//Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry - Past and Present. Special Paper of the Geological Society of America, Boulder, Colorado, 2004: 63-81.

    [16]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [17]

    Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea [J]. Geochimica et Cosmochimica Acta, 2017, 211: 153-173. doi: 10.1016/j.gca.2017.05.015

    [18]

    邬黛黛, 吴能友, 张美, 等. 东沙海域SMI与甲烷通量的关系及对水合物的指示[J]. 地球科学-中国地质大学学报, 2013, 38(6):1309-1320 doi: 10.3799/dqkx.2013.128

    WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128

    [19]

    McGlynn S E, Chadwick G L, Kempes C P, et al. Single cell activity reveals direct electron transfer in methanotrophic consortia [J]. Nature, 2015, 526(7574): 531-535. doi: 10.1038/nature15512

    [20]

    Wegener G, Krukenberg V, Riedel D, et al. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria [J]. Nature, 2015, 526(7574): 587-590. doi: 10.1038/nature15733

    [21]

    Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation [J]. Nature, 2012, 491(7425): 541-546. doi: 10.1038/nature11656

    [22]

    Scheller S, Yu H, Chadwick G L, et al. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction [J]. Science, 2016, 351(6274): 703-707. doi: 10.1126/science.aad7154

    [23]

    Crémière A, Pellerin A, Wing B A, et al. Multiple sulfur isotopes in methane seep carbonates track unsteady sulfur cycling during anaerobic methane oxidation [J]. Earth and Planetary Science Letters, 2020, 532: 115994. doi: 10.1016/j.jpgl.2019.115994

    [24]

    Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017

    [25]

    Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9

    [26]

    Böttcher M E, Boetius A, Rickert D. Sulfur isotope fractionation during microbial sulfate reduction associated with anaerobic methane oxidation[Z]. TERRA NOSTRA, 2003, 3, 89.

    [27]

    Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog [J]. Geology, 2010, 38(5): 415-418. doi: 10.1130/G30723.1

    [28]

    Jørgensen B B, Findlay A J, Pellerin A. The biogeochemical sulfur cycle of marine sediments [J]. Frontiers in Microbiology, 2019, 10: 849. doi: 10.3389/fmicb.2019.00849

    [29]

    Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species [J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4

    [30]

    Miao X M, Feng X L, Liu X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite [J]. Marine and Petroleum Geology, 2021, 133: 105231. doi: 10.1016/j.marpetgeo.2021.105231

    [31]

    Raven M R, Sessions A L, Fischer W W, et al. Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur [J]. Geochimica et Cosmochimica Acta, 2016, 186: 120-134. doi: 10.1016/j.gca.2016.04.037

    [32]

    Akam S A, Lyons T W, Coffin R B, et al. Carbon-sulfur signals of methane versus crude oil diagenetic decomposition and U-Th age relationships for authigenic carbonates from asphalt seeps, southern Gulf of Mexico [J]. Chemical Geology, 2021, 581: 120395. doi: 10.1016/j.chemgeo.2021.120395

    [33]

    Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    [34]

    Pierre C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin [J]. Chemical Geology, 2017, 449: 158-164. doi: 10.1016/j.chemgeo.2016.11.005

    [35]

    Lin Z Y, Sun X M, Strauss H, et al. Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment [J]. Marine Geology, 2018, 403: 271-284. doi: 10.1016/j.margeo.2018.06.010

    [36]

    Liu J R, Pellerin A, Wang J S, et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation [J]. Geochimica et Cosmochimica Acta, 2022, 316: 309-330. doi: 10.1016/j.gca.2021.09.026

    [37]

    冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6):1047-1056

    FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056.

    [38]

    Johnston D T. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle [J]. Earth-Science Reviews, 2011, 106(1-2): 161-183. doi: 10.1016/j.earscirev.2011.02.003

    [39]

    Ono S, Wing B, Johnston D, et al. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles [J]. Geochimica Et Cosmochimica Acta, 2006, 70(9): 2238-2252. doi: 10.1016/j.gca.2006.01.022

    [40]

    Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle [J]. Earth and Planetary Science Letters, 2014, 396: 14-21. doi: 10.1016/j.jpgl.2014.03.057

    [41]

    Farquhar J, Johnston D T, Wing B A, et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record [J]. Geobiology, 2003, 1(1): 27-36. doi: 10.1046/j.1472-4669.2003.00007.x

    [42]

    Hulston J R, Thode H G. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects [J]. Journal of Geophysical Research, 1965, 70(14): 3475-3484. doi: 10.1029/JZ070i014p03475

    [43]

    Young E D, Galy A, Nagahara H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance [J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1095-1104. doi: 10.1016/S0016-7037(01)00832-8

    [44]

    Rudnicki M D, Elderfield H, Spiro B. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 777-789. doi: 10.1016/S0016-7037(00)00579-2

    [45]

    Wortmann U G, Bernasconi S M, Böttcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction [J]. Geology, 2001, 29(7): 647-650. doi: 10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2

    [46]

    Farquhar J, Johnston D T, Wing B A. Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction [J]. Geochimica et Cosmochimica Acta, 2007, 71(24): 5862-5875. doi: 10.1016/j.gca.2007.08.028

    [47]

    Antler G, Turchyn A V, Ono S, et al. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction [J]. Geochimica et Cosmochimica Acta, 2017, 203: 364-380. doi: 10.1016/j.gca.2017.01.015

    [48]

    Knittel K, Wegener G, Boetius A. Anaerobic methane oxidizers[M]//McGenity T J. Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology. Springer International Publishing, 2018: 1-21.

    [49]

    Canfield D E. Biogeochemistry of sulfur isotopes [J]. Reviews in Mineralogy & Geochemistry, 2001, 43(1): 607-636.

    [50]

    Pellerin A, Antler G, Holm S A, et al. Large sulfur isotope fractionation by bacterial sulfide oxidation [J]. Science Advances, 2019, 5(7): eaaw1480. doi: 10.1126/sciadv.aaw1480

    [51]

    Fry B, Cox J, Gest H, et al. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds [J]. Journal of Bacteriology, 1986, 165(1): 328-330. doi: 10.1128/jb.165.1.328-330.1986

    [52]

    Habicht K S, Canfield D E, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite [J]. Geochimica et Cosmochimica Acta, 1998, 62(15): 2585-2595. doi: 10.1016/S0016-7037(98)00167-7

    [53]

    Peckmann J, Thiel V. Carbon cycling at ancient methane–seeps [J]. Chemical Geology, 2003, 205(3-4): 443-467.

    [54]

    Finster K. Microbiological disproportionation of inorganic sulfur compounds [J]. Journal of Sulfur Chemistry, 2008, 29(3-4): 281-292. doi: 10.1080/17415990802105770

    [55]

    Turchyn A V, Brrchert V, Lyons T W, et al. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2011-2024. doi: 10.1016/j.gca.2010.01.004

    [56]

    Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.

    [57]

    Peketi A, Mazumdar A, Joao H M, et al. Coupled C–S–Fe geochemistry in a rapidly accumulating marine sedimentary system: Diagenetic and depositional implications [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 2865-2883. doi: 10.1002/2015GC005754

    [58]

    Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001

    [59]

    Lin Q, Wang J S, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea [J]. Marine Geology, 2016, 379: 100-108. doi: 10.1016/j.margeo.2016.05.016

    [60]

    Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea [J]. Chemical Geology, 2016, 440: 26-41. doi: 10.1016/j.chemgeo.2016.07.007

    [61]

    Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea [J]. Journal of Asian Earth Sciences, 2016, 123: 213-223. doi: 10.1016/j.jseaes.2016.04.007

    [62]

    Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1

    [63]

    Goldhaber M B, Kaplan I R. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California [J]. Marine Chemistry, 1980, 9(2): 95-143. doi: 10.1016/0304-4203(80)90063-8

    [64]

    Jørgensen B B. A theoretical model of the stable sulfur isotope distribution in marine sediments [J]. Geochimica et Cosmochimica Acta, 1979, 43(3): 363-374. doi: 10.1016/0016-7037(79)90201-1

    [65]

    Masterson A L. Multiple sulfur isotope applications in diagenetic models and geochemical proxy records[D]. Doctoral Dissertation of Harvard University, Graduate School of Arts & Sciences, 2016.

    [66]

    Gong S G, Peng Y B, Bao H M, et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane [J]. Earth and Planetary Science Letters, 2018, 504: 13-20. doi: 10.1016/j.jpgl.2018.09.036

    [67]

    Neretin L N, Böttcher M E, Jørgensen B B, et al. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093. doi: 10.1016/S0016-7037(03)00450-2

    [68]

    Turchyn A V, Antler G, Byrne D, et al. Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385 [J]. Global and Planetary Change, 2016, 141: 82-90. doi: 10.1016/j.gloplacha.2016.03.004

    [69]

    Teichert B M A, Chevalier N, Gussone N, et al. Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin) [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 153: 79-91. doi: 10.1016/j.dsr2.2017.11.014

    [70]

    常鑫, 张明宇, 谷玉, 等. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12):1306-1320 doi: 10.11867/j.issn.1001-8166.2020.105

    CHANG Xin, ZHANG Mingyu, GU Yu, et al. Formation mechanism and controlling factors of authigenic pyrite in mud sediments on the shelf of the Yellow Sea and the East China Sea [J]. Advances in Earth Science, 2020, 35(12): 1306-1320. doi: 10.11867/j.issn.1001-8166.2020.105

    [71]

    Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope [J]. Earth and Planetary Science Letters, 2011, 309(1-2): 89-99.

    [72]

    Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1531): 25-38. doi: 10.1098/rsta.1985.0027

    [73]

    Gong S G, Hu Y, Li N, et al. Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 96-105. doi: 10.1016/j.jseaes.2018.04.037

    [74]

    Formolo M J, Lyons T W. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2013, 119: 264-285. doi: 10.1016/j.gca.2013.05.017

    [75]

    Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions [J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8

    [76]

    张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6):178-188

    ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.

    [77]

    Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6

    [78]

    Pellerin A, Antler G, Røy H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2018, 239: 74-89. doi: 10.1016/j.gca.2018.07.027

    [79]

    康绪明, 古丽, 刘素美. 春季黄渤海沉积物中酸可挥发性硫与黄铁矿的分布特征及影响因素[J]. 海洋环境科学, 2014, 33(1):1-7

    KANG Xuming, GU Li, LIU Sumei. Distributions and influence factors of Acid Volatile Sulfide and pyrite in the Bohai Sea and Yellow Sea in spring [J]. Marine Environmental Science, 2014, 33(1): 1-7.

    [80]

    Rickard D, Luther G W. Chemistry of iron sulfides [J]. Chemical Reviews, 2007, 107(2): 514-562. doi: 10.1021/cr0503658

    [81]

    Shawar L, Halevy I, Said-Ahmad W, et al. Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments [J]. Geochimica et Cosmochimica Acta, 2018, 241: 219-239. doi: 10.1016/j.gca.2018.08.048

    [82]

    Price F T, Shieh Y N. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures [J]. Chemical Geology, 1979, 27(3): 245-253. doi: 10.1016/0009-2541(79)90042-1

    [83]

    Butler I B, Böttcher M E, Rickard D, et al. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records [J]. Earth and Planetary Science Letters, 2004, 228(3-4): 495-509. doi: 10.1016/j.jpgl.2004.10.005

    [84]

    Chen T T, Sun X M, Lin Z Y, et al. Deciphering the geochemical link between seep carbonates and enclosed pyrite: A case study from the northern South China sea [J]. Marine and Petroleum Geology, 2021, 128: 105020. doi: 10.1016/j.marpetgeo.2021.105020

    [85]

    李鑫, 曹红, 耿威, 等. 碳酸盐晶格硫研究进展[J]. 海洋地质与第四纪地质, 2020, 40(3):119-131

    LI Xin, CAO Hong, GENG Wei, et al. Research progress in carbonate associated sulfate [J]. Marine Geology & Quaternary Geology, 2020, 40(3): 119-131.

    [86]

    Deusner C, Holler T, Arnold G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters, 2014, 399: 61-73. doi: 10.1016/j.jpgl.2014.04.047

    [87]

    Liu X T, Li A C, Fike D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation [J]. Marine Geology, 2020, 429: 106307. doi: 10.1016/j.margeo.2020.106307

    [88]

    Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur [J]. Science, 1994, 266(5193): 1973-1975. doi: 10.1126/science.11540246

    [89]

    Peckmann J, Goedert J L, Heinrichs T, et al. The Late Eocene 'Whiskey Creek' methane-seep deposit (western Washington State) [J]. Facies, 2003, 48(1): 241-253. doi: 10.1007/BF02667542

    [90]

    Lichtschlag A, Kamyshny A, Ferdelman T G, et al. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea) [J]. Geochimica et Cosmochimica Acta, 2013, 105: 130-145. doi: 10.1016/j.gca.2012.11.025

    [91]

    Pellerin A, Bui T H, Rough M, et al. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: A case study from Mangrove Lake, Bermuda [J]. Geochimica et Cosmochimica Acta, 2015, 149: 152-164. doi: 10.1016/j.gca.2014.11.007

    [92]

    Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the mesoproterozoic [J]. Science, 2005, 310(5753): 1477-1479. doi: 10.1126/science.1117824

    [93]

    Johnston D T, Farquhar J, Wing B A, et al. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators [J]. American Journal of Science, 2005, 305(6-8): 645-660. doi: 10.2475/ajs.305.6-8.645

    [94]

    Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica Et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6

    [95]

    Weber H S, Thamdrup B, Habicht K S. High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low-sulfate, iron-rich environment [J]. Frontiers in Earth Science, 2016, 4: 61.

    [96]

    Masterson A, Alperin M J, Berelson W M, et al. Interpreting multiple sulfur isotope signals in modern anoxic sediments using a full diagenetic model (California-Mexico margin: Alfonso Basin) [J]. American Journal of Science, 2018, 318(5): 459-490. doi: 10.2475/05.2018.02

    [97]

    Ono S, Keller N S, Rouxel O, et al. Sulfur-33 constraints on the origin of secondary pyrite in altered oceanic basement [J]. Geochimica et Cosmochimica Acta, 2012, 87: 323-340. doi: 10.1016/j.gca.2012.04.016

    [98]

    Pasquier V, Fike D A, Halevy I. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone [J]. Nature Communications, 2021, 12(1): 4403. doi: 10.1038/s41467-021-24753-x

    [99]

    Zhang M, Lu H F, Guan H X, et al. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea [J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27. doi: 10.1007/s13131-018-1241-1

    [100]

    Strauss H, Bast R, Cording A, et al. Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes [J]. Isotopes in Environmental and Health Studies, 2012, 48(1): 166-179. doi: 10.1080/10256016.2012.648930

    [101]

    Sim M S, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation [J]. Science, 2011, 333(6038): 74-77. doi: 10.1126/science.1205103

    [102]

    Böttcher M E, Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1573-1581. doi: 10.1016/S0016-7037(00)00622-0

    [103]

    Johnston D T, Gill B C, Masterson A, et al. Placing an upper limit on cryptic marine sulphur cycling [J]. Nature, 2014, 513(7519): 530-533. doi: 10.1038/nature13698

    [104]

    Mills J V, Antler G, Turchyn A V. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments [J]. Earth and Planetary Science Letters, 2016, 453: 23-32. doi: 10.1016/j.jpgl.2016.08.001

    [105]

    Sassen R, Roberts H H, Carney R, et al. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes [J]. Chemical Geology, 2004, 205(3-4): 195-217. doi: 10.1016/j.chemgeo.2003.12.032

    [106]

    Riedinger N, Brunner B, Krastel S, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The argentine continental margin [J]. Frontiers in Earth Science, 2017, 5: 33. doi: 10.3389/feart.2017.00033

    [107]

    Lonsdale P. A deep-sea hydrothermal site on a strike-slip fault [J]. Nature, 1979, 281(5732): 531-534. doi: 10.1038/281531a0

    [108]

    Suess E, Bohrmann G, von Huene R, et al. Fluid venting in the eastern Aleutian subduction zone [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B2): 2597-2614. doi: 10.1029/97JB02131

    [109]

    Castellini D G, Dickens G R, Snyder G T, et al. Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico [J]. Chemical Geology, 2006, 226(1-2): 1-30. doi: 10.1016/j.chemgeo.2005.08.008

    [110]

    Joye S B, MacDonald I R, Montoya J P, et al. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines [J]. Biogeosciences, 2005, 2(3): 295-309. doi: 10.5194/bg-2-295-2005

    [111]

    Aquilina L, Dia A N, Boulègue J, et al. Massive barite deposits in the convergent margin off Peru: implications for fluid circulation within subduction zones [J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1233-1245. doi: 10.1016/S0016-7037(96)00402-4

    [112]

    Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites [J]. Earth and Planetary Science Letters, 2002, 203(1): 165-180. doi: 10.1016/S0012-821X(02)00830-0

    [113]

    Snyder G T, Dickens G R, Castellini D G. Labile barite contents and dissolved barium concentrations on Blake Ridge: new perspectives on barium cycling above gas hydrate systems [J]. Journal of Geochemical Exploration, 2007, 95(1-3): 48-65. doi: 10.1016/j.gexplo.2007.06.001

    [114]

    Hein J R, Zierenberg R A, Maynard J B, et al. Barite-forming environments along a rifted continental margin, Southern California Borderland [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1327-1349. doi: 10.1016/j.dsr2.2007.04.011

    [115]

    Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9

    [116]

    Antler G, Turchyn A V, Herut B, et al. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments [J]. Estuarine, Coastal and Shelf Science, 2014, 142: 4-11. doi: 10.1016/j.ecss.2014.03.001

    [117]

    Kunzmann M, Bui T H, Crockford P W, et al. Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation [J]. Geology, 2017, 45(3): 207-210. doi: 10.1130/G38602.1

    [118]

    Leavitt W D, Halevy I, Bradley A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11244-11249. doi: 10.1073/pnas.1218874110

    [119]

    Sim M S, Ono S, Donovan K, et al. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4244-4259. doi: 10.1016/j.gca.2011.05.021

    [120]

    Haeckel M, Boudreau B P, Wallmann K. Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation [J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5135-5154. doi: 10.1016/j.gca.2007.08.011

    [121]

    Druhan J L, Maher K. The influence of mixing on stable isotope ratios in porous media: A revised Rayleigh model [J]. Water Resources Research, 2017, 53(2): 1101-1124. doi: 10.1002/2016WR019666

    [122]

    Wing B A, Halevy I. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18116-18125. doi: 10.1073/pnas.1407502111

    [123]

    Wortmann U G, Chernyavsky B M. The significance of isotope specific diffusion coefficients for reaction-transport models of sulfate reduction in marine sediments [J]. Geochimica Et Cosmochimica Acta, 2011, 75(11): 3046-3056. doi: 10.1016/j.gca.2011.03.007

    [124]

    Berner R A. An idealized model of dissolved sulfate distribution in recent sediments [J]. Geochimica et Cosmochimica Acta, 1964, 28(9): 1497-1503. doi: 10.1016/0016-7037(64)90164-4

    [125]

    Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671-4692. doi: 10.1016/j.gca.2010.05.008

  • 加载中

(7)

(1)

计量
  • 文章访问数:  2625
  • PDF下载数:  49
  • 施引文献:  0
出版历程
收稿日期:  2021-11-22
修回日期:  2022-03-23
刊出日期:  2022-06-28

目录