Theoretical framework for coastal accretion-erosion analysis: material budgeting, profile morphology, shoreline change
-
摘要:
海岸线动态经常被作为海岸冲淤的判据,然而,由于未能涵盖物质收支和海岸剖面形态的双重因素影响,此判据具有局限性。基于沉积物收支方程性质和海滩-潮滩剖面形态的理论分析,认为将物质收支与岸线进退速率或海岸剖面形态相结合,才能准确判别海岸冲淤状态。沉积物收支方程含有沉积体系规模、冲淤强度、系统生长极限等信息;海滩剖面形态决定于物质粒径、波能大小,波能耗散最小原理决定了海滩均衡剖面的存在性,而潮滩剖面形态决定于沉积物供给、粒径组成和潮汐动力。根据沉积物收支方程和海岸剖面理论,融合极端事件(风暴等)和海面变化因素,可获取砂质海岸(以海滩为代表)、泥质海岸(以潮滩为代表)各种侵蚀现象的发生机制、速率和时间尺度信息,海岸线变化速率从低(<100 m/a)到高(101~102 m/a)有数量级的差异,冲淤过程的时间尺度包括10−2 a(风暴事件)到103 a(海面变化)的范围。根据沉积物收支和海岸线进退的不同组合,可将海滩、潮滩海岸冲淤动态分为4类,其中第一类为堆积海岸,其余三类为侵蚀海岸,与不同的地貌演化方向和时间尺度相联系。高强度、长时间持续侵蚀主要与物质供给中断和海面上升相关,同时也有人为因素影响。
Abstract:Shoreline dynamics is often used as a criterion for coastal erosion or accretion. However, this criterion may not be valid because it does not incorporate the factors of material budget and coastal profile morphology. Based upon an analysis of the properties of sediment budget equation and the profile morphology of beach and tidal flat systems, it is argued that only by combining the material budget with the rate of shoreline retreat or the profile morphology can the status of accretion-erosion be accurately identified. The sediment budget equation contains the information on the magnitude of a sedimentary system, accretion-erosion intensity, and the growth limit of the system. The beach profile shape depends on particle size and wave energy. The minimum wave energy dissipation principle implies the existence of equilibrium morphology, while the tidal flat profile shape depends on sediment supply, particle size composition and tidal dynamics. On such a basis, the erosion of both sandy coasts (represented by beaches) and muddy coasts (represented by tidal flats) can be understood in terms its mechanisms, rate and temporal scales by taking into account the various factors such as extreme events induced by storms and sea level rise. The rate of shoreline change may vary by orders of magnitude, ranging from low values of <100 m/a to high values of 101~102 m /a, with time scales for accretion-erosion processes ranging from 10−2 a (storm events) to 103 a (sea level changes). According to the different combinations of sediment budget and shoreline advancing/retreating patterns, the dynamic behaviour of the coastal zone associated with beaches and tidal flats has four possible situations: one of them is related to accretion, and the others are linked with erosion. The different types of erosion are each determined by the geomorphic evolution direction and the temporal scale. High intensity, long-time persisting erosion is mainly related to material supply cutoff and sea level rise, and is influenced by anthropogenic factors.
-
[1] 夏东兴, 王文海, 武桂秋, 等. 中国海岸侵蚀述要[J]. 地理学报, 1993, 48(5):468-476 doi: 10.3321/j.issn:0375-5444.1993.05.010
XIA Dongxing, WANG Wenhai, WU Guiqiu, et al. Coastal erosion in China [J]. Acta Geographica Sinica, 1993, 48(5): 468-476. doi: 10.3321/j.issn:0375-5444.1993.05.010
[2] 陈吉余. 中国海岸侵蚀概要[M]. 北京: 海洋出版社, 2010
CHEN Jiyu. A Synthesis of Coastal Erosion in China[M]. Beijing: China Ocean Press, 2010.
[3] Bacopoulos P, Clark R R. Coastal erosion and structural damage due to four consecutive-year major hurricanes: beach projects afford resilience and coastal protection [J]. Ocean & Coastal Management, 2021, 209: 105643.
[4] Brooke B, Lee R, Cox M, et al. Rates of shoreline progradation during the last 1700 years at beachmere, southeastern Queensland, Australia, based on optically stimulated luminescence dating of beach ridges [J]. Journal of Coastal Research, 2008, 24(3): 640-648.
[5] Brooke B P, Olley J M, Pietsch T, et al. Chronology of quaternary coastal aeolianite deposition and the drowned shorelines of southwestern western Australia: a reappraisal [J]. Quaternary Science Reviews, 2014, 93: 106-124. doi: 10.1016/j.quascirev.2014.04.007
[6] Gao S. Modeling the growth limit of the Changjiang delta [J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021
[7] King C A M. Beaches and Coasts[M]. 2nd ed. London: Edward Arnold, 1972.
[8] Komar P D. Beach Processes and Sedimentation[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1998.
[9] Flemming B W, Davis R A Jr. Holocene evolution, morphodynamics and sedimentology of the Spiekeroog Barrier Island system (southern North Sea) [J]. Senckenbergiana Maritima, 1994, 24(1-6): 117-155.
[10] 张忍顺, 陈才俊. 江苏岸外沙洲演变与条子泥并陆前景研究[M]. 北京: 海洋出版社, 1992
ZHANG Renshun, Chen Caijun. Evolution of Jiangsu Offshore banksia (Radial Offshore Tidal Sands) and Probability of Tiaozini Sands to Merged into Mainland[M]. Beijing: China Ocean Press, 1992.
[11] Duc D M, Nhuan M T, Ngoi C V. An analysis of coastal erosion in the tropical rapid accretion delta of the Red River, Vietnam [J]. Journal of Asian Earth Sciences, 2012, 43(1): 98-109. doi: 10.1016/j.jseaes.2011.08.014
[12] Trenhaile A S. The Geomorphology of Rock Coasts[M]. Oxford: Clarendon Press, 1987.
[13] Sunamura T. Geomorphology of Rocky Coasts[M]. Chichester: John Wiley, 1992.
[14] Davis R A Jr, Fitzgerald D M. Beaches and Coasts[M]. Malden: Blackwell, 2004.
[15] Carter R W G. Coastal Environments: An Introduction to the Physical, Ecological and Cultural Systems of Coastlines[M]. San Diego: Academic Press, 1988.
[16] Woodroffe C D. Coasts: Form, Process and Evolution[M]. Cambridge: Cambridge University Press, 2002.
[17] Thom B G, Hall W. Behaviour of beach profiles during accretion and erosion dominated periods [J]. Earth Surface Processes and Landforms, 1991, 16(2): 113-127. doi: 10.1002/esp.3290160203
[18] Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam [J]. Marine Geology, 2010, 269(1-2): 46-60. doi: 10.1016/j.margeo.2009.12.005
[19] Gao S, Wang Y P, Gao J H. Sediment retention at the Changjiang sub-aqueous delta over a 57 year period, in response to catchment changes [J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 29-38. doi: 10.1016/j.ecss.2011.07.015
[20] Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century [J]. Marine Geology, 2018, 401: 2-16. doi: 10.1016/j.margeo.2018.04.005
[21] Crossland C J, Kremer H H, Lindeboom H J, et al. Coastal Fluxes in the Anthropocene[M]. Berlin: Springer, 2005.
[22] 高抒. 海岸带陆海相互作用及其环境影响[M]//中国海洋学会. 2007-2008海洋科学学科发展报告. 北京: 中国科学技术出版社, 2008: 79-87, 165-166
GAO Shu. Land-ocean interactions in the coastal zone and their environmental influences[M]//Chinese Society for Oceanography. Report on Advances in Ocean Science. Beijing: China Science and Technology Press, 2008: 79-87, 165-166.
[23] Haslett S K. Coastal Systems[M]. London: Routledge, 2000.
[24] Kay R, Alder J. Coastal Planning and Management[M]. London: E & FN Spon, 1999.
[25] 任美锷. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986
REN Mei’e. The Report of Integrated Survey for Coastal Zone and Tidal Plat in Jiangsu Province[M]. Beijing: China Ocean Press, 1986.
[26] Boak E H, Turner I L. Shoreline definition and detection: a review [J]. Journal of Coastal Research, 2005, 21(4): 688-703.
[27] Merritt W S, Letcher R A, Jakeman A J. A review of erosion and sediment transport models [J]. Environmental Modelling & Software, 2003, 18(8-9): 761-799.
[28] Bird E C F. Coasts: An Introduction to Coastal Geomorphology[M]. 3rd ed. Oxford: B. Blackwell, 1984.
[29] 高抒, 朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报: 自然科学版, 1988, 24(1):75-84
GAO Shu, ZHU Dakui. The profile of Jiangsu’s mud coast [J]. Journal of Nanjing University:Natural Sciences Edition, 1988, 24(1): 75-84.
[30] Toure S, Diop O, Kpalma K, et al. Shoreline detection using optical remote sensing: a review [J]. ISPRS International Journal of Geo-information, 2019, 8(2): 75. doi: 10.3390/ijgi8020075
[31] Sarretta A, Pillon S, Molinaroli E, et al. Sediment budget in the Lagoon of Venice, Italy [J]. Continental Shelf Research, 2010, 30(8): 934-949. doi: 10.1016/j.csr.2009.07.002
[32] Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: erosion of the Yangtze River and its delta [J]. Global and Planetary Change, 2011, 75(1-2): 14-20. doi: 10.1016/j.gloplacha.2010.09.006
[33] Luo X X, Yang S L, Wang R S, et al. New evidence of Yangtze delta recession after closing of the Three Gorges Dam [J]. Scientific Reports, 2017, 7: 41735. doi: 10.1038/srep41735
[34] Mei X F, Dai Z J, Wei W, et al. Secular bathymetric variations of the north Channel in the Changjiang (Yangtze) Estuary, China, 1880-2013: causes and effects [J]. Geomorphology, 2018, 303: 30-40. doi: 10.1016/j.geomorph.2017.11.014
[35] Li J, Gao S. Estimating deposition rates using a morphological proxy of Spartina alterniflora plants [J]. Journal of Coastal Research, 2013, 29(6): 1452-1463.
[36] Wang D D, Gao S, Zhao Y Y, et al. An eco-parametric method to derive sedimentation rates for coastal saltmarshes [J]. Science of the Total Environment, 2021, 770: 144756. doi: 10.1016/j.scitotenv.2020.144756
[37] 高抒, 方国洪, 于克俊, 等. 沉积物输运对砂质海底稳定性影响的评估方法及应用实例[J]. 海洋科学集刊, 2001, 43:25-37
GAO Shu, FANG Guohang, YU Kejun, et al. Methodology for evaluating the stability of sandy seabed controlled by sediment movement, with an example of application [J]. Studia Marina Sinica, 2001, 43: 25-37.
[38] Yu Q, Wang Y W, Gao S, et al. Modeling the formation of a sand bar within a large funnel-shaped, tide-dominated estuary: Qiantangjiang Estuary, China [J]. Marine Geology, 2012, 299-302: 63-76. doi: 10.1016/j.margeo.2011.12.008
[39] Xie D F, Pan C H, Wu X G, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years [J]. Journal of Geophysical Research:Oceans, 2017, 122(4): 2999-3020. doi: 10.1002/2016JC012264
[40] Xie D F, Gao S, Pan C H. Process-based modeling of morphodynamics of a tidal inlet system [J]. Acta Oceanologica Sinica, 2010, 29(6): 51-61. doi: 10.1007/s13131-010-0076-1
[41] Yu Q, Wang Y W, Gao J H, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: the role of tidal pumping [J]. Journal of Geophysical Research:Oceans, 2014, 119(11): 7705-7724. doi: 10.1002/2014JC010228
[42] Wang Y W, Wang Y P, Yu Q, et al. Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents [J]. Journal of Geophysical Research:Oceans, 2019, 124(6): 3818-3836. doi: 10.1029/2018JC014550
[43] 吴超羽, 包芸, 任杰, 等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000-2500a[J]. 海洋学报, 2006, 28(4):64-80
WU Chaoyu, BAO Yun, REN Jie, et al. A numerical simulation and mophodynamic analysis on the evolution of the Zhujiang River delta in China: 6000~2500 a BP [J]. Acta Oceanologica Sinica, 2006, 28(4): 64-80.
[44] Hapke C J, Lentz E E, Gayes P T, et al. A review of sediment budget imbalances along Fire Island, New York: can nearshore geologic framework and patterns of shoreline change explain the deficit? [J]. Journal of Coastal Research, 2010, 263(3): 510-522.
[45] Gao S, Collins M. Net sand transport direction in a tidal inlet, using foraminiferal tests as natural tracers [J]. Estuarine, Coastal and Shelf Science, 1995, 40(6): 681-697. doi: 10.1006/ecss.1995.0046
[46] Strogatz S H. Exploring complex networks [J]. Nature, 2001, 410(6825): 268-276. doi: 10.1038/35065725
[47] 高抒, 贾建军, 于谦. 绿色海堤的沉积地貌与生态系统动力学原理: 研究综述[J]. 热带海洋学报, 2022, 41(4):1-19
GAO Shu, JIA Jianjun, YU Qian. Green sea dykes: an overview of their principles of sediment, geomorphology and ecosystem dynamics [J]. Journal of Tropical Oceanography, 2022, 41(4): 1-19.
[48] Young A P, Carilli J E. Global distribution of coastal cliffs [J]. Earth Surface Processes and Landforms, 2019, 44(6): 1309-1316. doi: 10.1002/esp.4574
[49] Limber P W, Murray A B. Sea stack formation and the role of abrasion on beach-mantled headlands [J]. Earth Surface Processes and Landforms, 2015, 40(4): 559-568. doi: 10.1002/esp.3667
[50] Cullen N D, Bourke M C. Clast abrasion of a rock shore platform on the Atlantic coast of Ireland [J]. Earth Surface Processes and Landforms, 2018, 43(12): 2627-2641. doi: 10.1002/esp.4421
[51] Watanabe M, Goto K, Imamura F, et al. Modeling boulder transport by coastal waves on cliff topography: case study at Hachijo Island, Japan [J]. Earth Surface Processes and Landforms, 2019, 44(15): 2939-2956. doi: 10.1002/esp.4684
[52] Buchanan D H, Naylor L A, Hurst M D, et al. Erosion of rocky shore platforms by block detachment from layered stratigraphy [J]. Earth Surface Processes and Landforms, 2020, 45(4): 1028-1037. doi: 10.1002/esp.4797
[53] Matsumoto H, Dickson M E, Kench P S. Modelling the relative dominance of wave erosion and weathering processes in shore platform development in micro- to mega-tidal settings [J]. Earth Surface Processes and Landforms, 2018, 43(12): 2642-2653. doi: 10.1002/esp.4422
[54] Gao S, Collins M. Equilibrium coastal profiles: I. Review and synthesis [J]. Chinese Journal of Oceanology and Limnology, 1998, 16(2): 97-107. doi: 10.1007/BF02845175
[55] Brooks S M, Spencer T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK [J]. Geomorphology, 2010, 124(1-2): 26-41. doi: 10.1016/j.geomorph.2010.08.005
[56] Carpenter N E, Dickson M E, Walkden M, et al. Lithological controls on soft cliff planshape evolution under high and low sediment availability [J]. Earth Surface Processes and Landforms, 2015, 40(6): 840-852. doi: 10.1002/esp.3675
[57] Hurst M D, Rood D H, Ellis M A, et al. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): 13336-13341. doi: 10.1073/pnas.1613044113
[58] Stavrou A, Lawrence J A, Mortimore R N, et al. A geotechnical and GIS based method for evaluating risk exposition along coastal cliff environments: a case study of the chalk cliffs of southern England [J]. Natural Hazards and Earth System Sciences, 2011, 11(11): 2997-3011. doi: 10.5194/nhess-11-2997-2011
[59] Dawson R J, Dickson M E, Nicholls R J, et al. Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change [J]. Climatic Change, 2009, 95: 249-288. doi: 10.1007/s10584-008-9532-8
[60] Trenhaile A S. Predicting the response of hard and soft rock coasts to changes in sea level and wave height [J]. Climatic Change, 2011, 109(3): 599-615.
[61] Faraoni V. On the extremization of wave energy dissipation rates in equilibrium beach profiles [J]. Journal of Oceanography, 2020, 76(6): 459-463. doi: 10.1007/s10872-020-00556-4
[62] Maldonado S. Do beach profiles under nonbreaking waves minimize energy dissipation? [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015876.
[63] Dean R G. Equilibrium beach profiles: characteristics and applications [J]. Journal of Coastal Research, 1991, 7(1): 53-84.
[64] Bernabeu A M, Medina R, Vidal C. An equilibrium profile model for tidal environments [J]. Scientia Marina, 2002, 66(4): 325-335. doi: 10.3989/scimar.2002.66n4325
[65] Bernabeu A M, Medina R, Vidal C. A morphological model of the beach profile integrating wave and tidal influences [J]. Marine Geology, 2003, 197(1-4): 95-116. doi: 10.1016/S0025-3227(03)00087-2
[66] Castelle B, Marieu V, Bujan S, et al. Equilibrium shoreline modelling of a high-energy meso-macrotidal multiple-barred beach [J]. Marine Geology, 2014, 347: 85-94. doi: 10.1016/j.margeo.2013.11.003
[67] Gao S. Geomorphology and sedimentology of tidal flats[M]//Perillo G M E, Wolanski E, Cahoon D, et al. Coastal Wetlands: An Integrated Ecosystem Approach. 2nd ed. Amsterdam: Elsevier, 2019: 359-381.
[68] Flemming B W. Siliciclastic back-barrier tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 231-267.
[69] Van Straaten L M J U, Kuenen P H. Accumulation of fine grained sediments in the Dutch Wadden Sea [J]. Geologie en Mijnbouw, 1957, 19: 329-354.
[70] Van Straaten L M J U, Kuenen H. Tidal action as a cause of clay accumulation [J]. Journal of Sedimentary Research, 1958, 28(4): 406-413.
[71] 朱大奎, 高抒. 潮滩地貌与沉积的数学模型[J]. 海洋通报, 1985, 4(5):15-21
ZHU Dakui, GAO Shu. Mathematical model of the geomorphic evolution and sedimentation of tidal flats [J]. Marine Science Bulletin, 1985, 4(5): 15-21.
[72] Amos C L. Siliciclastic tidal flats[M]// Perillo G M E. Geomorphology and Sedimentology of Estuarine, Amsterdam: Elsevier, 1995: 273-306.
[73] Gao S. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, Eastern China [J]. Continental Shelf Research, 2009, 29(16): 1927-1936. doi: 10.1016/j.csr.2008.12.010
[74] Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China [J]. Marine Geology, 2012, 291-294: 147-161. doi: 10.1016/j.margeo.2011.01.004
[75] Pritchard D, Hogg A J. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents [J]. Journal of Geophysical Research:Oceans, 2003, 108(C10): 3313. doi: 10.1029/2002JC001570
[76] Liu X J, Gao S, Wang Y P. Modeling profile shape evolution for accreting tidal flats composed of mud and sand: a case study of the central Jiangsu coast, China [J]. Continental Shelf Research, 2011, 31(16): 1750-1760. doi: 10.1016/j.csr.2011.08.002
[77] Yang S L, Luo X X, Temmerman S, et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline [J]. Limnology and Oceanography, 2020, 65(9): 1990-2009. doi: 10.1002/lno.11432
[78] Kamphuis J W. Introduction to Coastal Engineering and Management[M]. Singapore: World Scientific, 2000.
[79] Wang Y, Ke X K. Cheniers on the east coastal plain of China [J]. Marine Geology, 1989, 90(4): 321-335. doi: 10.1016/0025-3227(89)90134-5
[80] Lee H J, Chun S S, Chang J H, et al. Landward migration of isolated shelly sand ridge (Chenier) on the macrotidal flat of Gomso Bay, west coast of Korea: controls of storms and typhoon [J]. Journal of Sedimentary Research, 1994, 64(4a): 886-893.
[81] Wang H, Van Strydonck M. Chronology of Holocene Cheniers and oyster reefs on the coast of Bohai Bay, China [J]. Quaternary Research, 1997, 47(2): 192-205. doi: 10.1006/qres.1996.1865
[82] Dashtgard S E, Vaucher R, Yang B C, et al. Hutchison medallist 1. Wave-dominated to tide-dominated coastal systems: a unifying model for tidal shorefaces and refinement of the coastal-environments classification scheme [J]. Geoscience Canada, 2021, 48(1): 5-22. doi: 10.12789/geocanj.2021.48.171
[83] Short A D. Macro-meso tidal beach morphodynamics: an overview [J]. Journal of Coastal Research, 1991, 7(2): 417-436.
[84] Masselink G, Hegge B. Morphodynamics of meso- and macrotidal beaches: examples from central Queensland, Australia [J]. Marine Geology, 1995, 129(1-2): 1-23. doi: 10.1016/0025-3227(95)00104-2
[85] Fan D D. Open-coast tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 187-229.
[86] 高抒. 极浅水边界层的沉积环境效应[J]. 沉积学报, 2010, 28(5):926-932 doi: 10.14027/j.cnki.cjxb.2010.05.005
GAO Shu. Extremely shallow water benthic boundary layer processes and the resultant sedimentological and morphological characteristics [J]. Acta Sedimentologica Sinica, 2010, 28(5): 926-932. doi: 10.14027/j.cnki.cjxb.2010.05.005
[87] Shi B W, Cooper J R, Pratolongo P D, et al. Erosion and accretion on a mudflat: the importance of very shallow-water effects [J]. Journal of Geophysical Research:Oceans, 2017, 122(12): 9476-9499. doi: 10.1002/2016JC012316
[88] Silvester R, Hsu J C. Coastal Stabilization: Innovative Concepts[M]. Upper Saddle River: Prentice Hall, 1993.
[89] Bruun P. Sea-level rise as a cause of shore erosion [J]. Journal of the Waterways and Harbors Division, 1962, 88(1): 117-130. doi: 10.1061/JWHEAU.0000252
[90] 高抒. 大型海底、海岸和沙漠沙丘的形态和迁移特征[J]. 地学前缘, 2009, 16(6):13-22 doi: 10.3321/j.issn:1005-2321.2009.06.002
GAO Shu. Morphological and migration characteristics of large-scaled submarine, coastal and desert sand dunes [J]. Earth Science Frontiers, 2009, 16(6): 13-22. doi: 10.3321/j.issn:1005-2321.2009.06.002
[91] Qi Y L, Yu Q, Gao S, et al. Morphological evolution of river mouth spits: wave effects and self-organization patterns [J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107567. doi: 10.1016/j.ecss.2021.107567
[92] Flor-Blanco G, Alcántara-Carrió J, Jackson D W T, et al. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events [J]. Geomorphology, 2021, 387: 107767. doi: 10.1016/j.geomorph.2021.107767
[93] Leont'yev I O. Estimating the vulnerability of a sandy coast to storm-induced erosion [J]. Oceanology, 2021, 61(2): 254-261. doi: 10.1134/S0001437021020119
[94] Donnelly C, Kraus N, Larson M. State of knowledge on measurement and modeling of coastal overwash [J]. Journal of Coastal Research, 2006, 22(4): 965-991.
[95] Toimil A, Camus P, Losada I J, et al. Climate change-driven coastal erosion modelling in temperate sandy beaches: methods and uncertainty treatment [J]. Earth-Science Reviews, 2020, 202: 103110. doi: 10.1016/j.earscirev.2020.103110
[96] Davis R A Jr. Geology of Holocene Barrier Island Systems[M]. Berlin: Springer-Verlag, 1994.
[97] Gao S, Collins M. Formation of salt-marsh cliffs in an accretional environment, Christchurch Harbour, southern England[C]//Proceedings of the 30th International Geological Congress (Volume 13: Marine Geology and Palaeoceanography). Beijing: VSP Press, 1997: 95-110.
[98] Zhao Y Y, Yu Q, Wang D D, et al. Rapid formation of marsh-edge cliffs, Jiangsu coast, China [J]. Marine Geology, 2017, 385: 260-273. doi: 10.1016/j.margeo.2017.02.001
[99] 赵秧秧, 高抒, 王丹丹, 等. 盐沼前缘陡坎韵律性形态特征及其形成过程与机理[J]. 地理学报, 2014, 69(3):378-390 doi: 10.11821/dlxb201403009
ZHAO Yangyang, GAO Shu, WANG Dandan, et al. Characteristics and formation mechanisms of the rhythmicmorphology of salt-marsh edge cliffs [J]. Acta Geographica Sinica, 2014, 69(3): 378-390. doi: 10.11821/dlxb201403009
[100] Ren M E, Zhang R S, Yang J H. Effect of typhoon No. 8114 on coastal morphology and sedimentation of Jiangsu Province, People's Republic of China [J]. Journal of Coastal Research, 1985, 1(1): 21-28.
[101] Wang J, Bai C, Xu Y H, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China [J]. Journal of Coastal Research, 2010, 26(5): 976-981.
[102] Reed D J. The response of coastal marshes to sea-level rise: survival or submergence? [J]. Earth Surface Processes and Landforms, 1995, 20(1): 39-48. doi: 10.1002/esp.3290200105
[103] Allen J R L. The Severn Estuary in southwest Britain: its retreat under marine transgression, and fine-sediment regime [J]. Sedimentary Geology, 1990, 66(1-2): 13-28. doi: 10.1016/0037-0738(90)90003-C
[104] Weill P, Tessier B, Mouazé D, et al. Shelly Cheniers on a modern macrotidal flat (Mont-Saint-Michel Bay, France): internal architecture revealed by ground-penetrating radar [J]. Sedimentary Geology, 2012, 279: 173-186. doi: 10.1016/j.sedgeo.2010.12.002
计量
- 文章访问数: 1635
- PDF下载数: 71
- 施引文献: 0