河流三角洲沉积体系再析

高抒. 河流三角洲沉积体系再析[J]. 海洋地质与第四纪地质, 2023, 43(3): 1-13. doi: 10.16562/j.cnki.0256-1492.2023042301
引用本文: 高抒. 河流三角洲沉积体系再析[J]. 海洋地质与第四纪地质, 2023, 43(3): 1-13. doi: 10.16562/j.cnki.0256-1492.2023042301
GAO Shu. Revisiting the concept of river delta sedimentary systems[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 1-13. doi: 10.16562/j.cnki.0256-1492.2023042301
Citation: GAO Shu. Revisiting the concept of river delta sedimentary systems[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 1-13. doi: 10.16562/j.cnki.0256-1492.2023042301

河流三角洲沉积体系再析

  • 基金项目: 国家自然科学基金重点项目“海岸风暴频率-强度关系的沉积记录分析”(41530962)
详细信息
    作者简介: 高抒(1956—),男,教授,主要从事海洋沉积地质学研究,E-mail:shugao@nju.edu.cn
  • 中图分类号: P736.2

Revisiting the concept of river delta sedimentary systems

  • 本文试从沉积动力学视角重新剖析河流三角洲沉积体系特征。根据“河流三角洲是同一河流入海物质所形成的集中堆积体”的定义,传统上根据径流、潮汐和波浪而构建的三端元分类图似乎不能概括三角洲的所有类型,河口湾形态、陆架环流和海面变化也有同等的重要性,可形成海湾充填三角洲、远端泥、陆架边缘三角洲这样的端元形态。沉积物重力流也是不可忽视的因素。融合以上各个因素所形成的河流三角洲形态谱系,有助于过程-产物关系的建立。需进一步开展的相关研究包括:① 地层层序中三角洲沉积类型的识别标志,以区分水下三角洲、远端泥,确定陆架边缘三角洲的归属;② 三角洲体系的时空分布及其与沉积记录完整性之间的关系;③ 三角洲演化的终极形态、规模与沉积物收支过程的关系。

  • 加载中
  • 图 1  我国部分河流三角洲在分类三角图中的位置

    Figure 1. 

    图 2  河口水下三角洲向海尖灭、向海聚合、平行推进斜坡层理的形成演化图示

    Figure 2. 

    图 3  珠江、长江、黄河远端泥所处的不同演化阶段[53]

    Figure 3. 

    图 4  年代-高程框架下的陆上三角洲、水下三角洲和远端泥复合体分布示意图

    Figure 4. 

  • [1]

    何起祥. 中国海洋沉积地质学[M]. 北京: 海洋出版社, 2006: 1-503

    HE Qixiang. Marine Sedimentary Geology of China[M]. Beijing: China Ocean Press, 2006: 1-503.

    [2]

    Shepard F P. Criteria in modern sediments useful in recognizing ancient sedimentary environments[M]//Van Straaten L M J U. Deltaic and Shallow Marine Deposits: Proceedings of the 6th International Sedimentological Congress the Netherlands and Belgium. Amsterdam: Elsevier, 1964: 1-25.

    [3]

    Kuenen P H. Marine Geology[M]. New York: John Wiley and Sons, 1950: 1-568.

    [4]

    Laughton A S, Roberts D G. Morphology of the continental margin [J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1978, 290(1366): 75-85.

    [5]

    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011: 1-384.

    [6]

    Mitchell J K, Soga K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: John Wiley, 2005: 1-577.

    [7]

    Curray J R. Sediment volume and mass beneath the Bay of Bengal [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 371-383. doi: 10.1016/0012-821X(94)90227-5

    [8]

    Jacobi R D. Sediment slides on the northwestern continental margin of Africa [J]. Marine Geology, 1976, 22(3): 157-173. doi: 10.1016/0025-3227(76)90045-1

    [9]

    Petley D N. The continental shelf and continental slop[M]//Burt T P, Allison R J. Sediment Cascades: An Integrated Approach. Chichester: Wiley-Blackwell, 2010: 433-448.

    [10]

    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7

    [11]

    Wetzel A. The transfer of river load to deep-sea fans: a quantitative approach [J]. AAPG Bulletin, 1993, 77(10): 1679-1692.

    [12]

    Allison M A. Geologic framework and environmental status of the Ganges-Brahmaputra delta [J]. Journal of Coastal Research, 1998, 14(3): 826-836.

    [13]

    Goodbred S L Jr, Kuehl S A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late Quaternary stratigraphy and evolution of the Ganges–Brahmaputra delta [J]. Sedimentary Geology, 2000, 133(3-4): 227-248. doi: 10.1016/S0037-0738(00)00041-5

    [14]

    Allison M A, Khan S R, Goodbred S L Jr, et al. Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain [J]. Sedimentary Geology, 2003, 155(3-4): 317-342. doi: 10.1016/S0037-0738(02)00185-9

    [15]

    李保华, 李从先, 沈焕庭. 冰后期长江三角洲沉积通量的初步研究[J]. 中国科学(D辑), 2002, 32(9):776-782 doi: 10.3321/j.issn:1006-9267.2002.09.009

    LI Baohua, LI Congxian, SHEN Huanting. Preliminary study on sediment fluxes for the Yangtze River Delta during the late glacial period [J]. Science in China (Series D), 2002, 32(9): 776-782. doi: 10.3321/j.issn:1006-9267.2002.09.009

    [16]

    Corbett D R, McKee B, Allison M. Nature of decadal-scale sediment accumulation on the western shelf of the Mississippi River delta [J]. Continental Shelf Research, 2006, 26(17-18): 2125-2140. doi: 10.1016/j.csr.2006.07.012

    [17]

    Gao S, Wang D D, Yang Y, et al. Holocene sedimentary systems on a broad continental shelf with abundant river input: process–product relationships[M]//Clift P D, Harff J, Wu J, et al. River-Dominated Shelf Sediments of East Asian Seas. London: Geological Society of London, 2016: 231-268.

    [18]

    Ager D V. The Nature of the Stratigraphical Record[M]. 2nd ed. New York: Wiley, 1981: 122.

    [19]

    Allison M A, Nittrouer C A, Ogston A S, et al. Sedimentation and survival of the Mekong Delta: a case study of decreased sediment supply and accelerating rates of relative sea level rise [J]. Oceanography, 2017, 30(3): 98-109. doi: 10.5670/oceanog.2017.318

    [20]

    高抒. 沉积记录研究的现代过程视角[J]. 沉积学报, 2017, 35(5):918-925

    GAO Shu. Discover more information from sedimentary records: views based on contemporary earth surface dynamic processes [J]. Acta Sedimentologica Sinica, 2017, 35(5): 918-925.

    [21]

    Najman Y. The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins [J]. Earth-Science Reviews, 2006, 74(1-2): 1-72.

    [22]

    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise [J]. Science, 1994, 265(5169): 228-231. doi: 10.1126/science.265.5169.228

    [23]

    Hori K, Saito Y, Zhao Q H, et al. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China [J]. Sedimentary Geology, 2002, 146(3-4): 249-264. doi: 10.1016/S0037-0738(01)00122-1

    [24]

    Hori K, Saito Y. An early Holocene sea-level jump and delta initiation [J]. Geophysical Research Letters, 2007, 34(18): L18401. doi: 10.1029/2007GL031029

    [25]

    Wright L D. River deltas[M]//Davis R A Jr. Coastal Sedimentary Environments. 2nd ed. New York: Springer-Verlag, 1985: 1-76.

    [26]

    Elliott T. Clastic shorelines[M]//Reading H G. Sedimentary Environments and Facies. Oxford: Blackwell, 1986: 113-154.

    [27]

    Woodroffe C D. Coasts: Form, Process and Evolution[M]. New York: Cambridge University Press, 2002: 1-623.

    [28]

    Gao S. Modeling the growth limit of the Changjiang Delta [J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021

    [29]

    Gao S, Collins M B. Holocene sedimentary systems on continental shelves [J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021

    [30]

    Sommerfield C K. On sediment accumulation rates and stratigraphic completeness: lessons from Holocene ocean margins [J]. Continental Shelf Research, 2006, 26(17-18): 2225-2240. doi: 10.1016/j.csr.2006.07.015

    [31]

    Blum M D, Törnqvist T E. Fluvial responses to climate and sea-level change: a review and look forward [J]. Sedimentology, 2000, 41(S1): 2-48.

    [32]

    Blum M D, Roberts H H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise [J]. Nature Geoscience, 2009, 2(7): 488-491. doi: 10.1038/ngeo553

    [33]

    Duc D M, Nhuan M T, Van Ngoi C. An analysis of coastal erosion in the tropical rapid accretion delta of the Red River, Vietnam [J]. Journal of Asian Earth Sciences, 2012, 43(1): 98-109. doi: 10.1016/j.jseaes.2011.08.014

    [34]

    Yang S L, Luo X X, Temmerman S, et al. Role of delta‐front erosion in sustaining salt marshes under sea‐level rise and fluvial sediment decline [J]. Limnology and Oceanography, 2020, 65(9): 1990-2009. doi: 10.1002/lno.11432

    [35]

    Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans [J]. Global and Planetary Change, 2007, 57(3-4): 261-282. doi: 10.1016/j.gloplacha.2006.12.001

    [36]

    Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities [J]. Nature Geoscience, 2009, 2(10): 681-686. doi: 10.1038/ngeo629

    [37]

    Restrepo J C, Schrottke K, Traini C, et al. Sediment transport and geomorphological change in a high-discharge tropical delta (Magdalena River, Colombia): insights from a period of intense change and human intervention (1990-2010) [J]. Journal of Coastal Research, 2016, 32(3): 575-589.

    [38]

    Gilbert G K. The topographic features of lake shores[R]. Reston, Virginia: U. S. Geological Survey, 1885: 75-123.

    [39]

    Bates C C. Rational theory of delta formation [J]. AAPG Bulletin, 1953, 37(9): 2119-2162.

    [40]

    Coleman J M. Dynamic changes and processes in the Mississippi River delta [J]. GSA Bulletin, 1988, 100(7): 999-1015. doi: 10.1130/0016-7606(1988)100<0999:DCAPIT>2.3.CO;2

    [41]

    Reading H G. Sedimentary Environments and Facies[M]. 2nd ed. Oxford: Blackwell Scientific Publications, 1991: 1-615.

    [42]

    Barrell J. Criteria for the recognition of ancient delta deposits [J]. GSA Bulletin, 1912, 23(1): 377-446. doi: 10.1130/GSAB-23-377

    [43]

    Fisher W L, McGowen J H. Depositional systems in Wilcox Group (Eocene) of Texas and their relation to occurrence of oil and gas [J]. AAPG Bulletin, 1969, 53(1): 30-54.

    [44]

    Shelton J W. Models of Sand and Sandstone Deposits: A Methodology for Determining Sand Genesis and Trend[M]. Norman: University of Oklahoma, 1973: 122.

    [45]

    Ethridge F G, Gopinath T R, Davies D K. Recognition of deltaic environments from small samples[M]//Broussard M L. Deltas: Models for Exploration. Texas: Houston Geological Society, 1975: 151-164.

    [46]

    Moore D. Deltaic sedimentation [J]. Earth-Science Reviews, 1966, 1(2-3): 87-104. doi: 10.1016/0012-8252(66)90001-8

    [47]

    Wright L D, Coleman J M. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes [J]. AAPG Bulletin, 1973, 57(2): 370-398.

    [48]

    Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[C]//Broussard M L. Deltas: Models for Exploration. Texas: Houston Geological Society, 1975: 87-98.

    [49]

    Coleman J M, Roberts H H, Stone G W. Mississippi River delta: an overview [J]. Journal of Coastal Research, 1998, 14(3): 699-716.

    [50]

    Evans G. Deltas: the fertile dustbins of the continents [J]. Proceedings of the Geologists' Association, 2012, 123(3): 397-418. doi: 10.1016/j.pgeola.2011.11.001

    [51]

    Palinkas C M, Nittrouer C A. Modern sediment accumulation on the Po shelf, Adriatic Sea [J]. Continental Shelf Research, 2007, 27(3-4): 489-505. doi: 10.1016/j.csr.2006.11.006

    [52]

    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008

    [53]

    Gao S, Liu Y L, Yang Y, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf [J]. Journal of Asian Earth Sciences, 2015, 114: 562-573. doi: 10.1016/j.jseaes.2015.07.024

    [54]

    Mayall M J, Yeilding C A, Oldroyd J D, et al. Facies in a shelf-edge delta-An example from the subsurface of the Gulf of Mexico, middle Pliocene, Mississippi Canyon, Block 109 [J]. AAPG Bulletin, 1992, 76(4): 435-448.

    [55]

    Dixon J F, Steel R J, Olariu C. River-dominated, shelf-edge deltas: delivery of sand across the shelf break in the absence of slope incision [J]. Sedimentology, 2012, 59(4): 1133-1157. doi: 10.1111/j.1365-3091.2011.01298.x

    [56]

    Bourget J, Ainsworth R B, Thompson S. Seismic stratigraphy and geomorphology of a tide or wave dominated shelf-edge delta (NW Australia): process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands [J]. Marine and Petroleum Geology, 2014, 57: 359-384. doi: 10.1016/j.marpetgeo.2014.05.021

    [57]

    Liu J, Kong X H, Saito Y, et al. Subaqueous deltaic formation of the Old Yellow River (AD 1128-1855) on the western South Yellow Sea [J]. Marine Geology, 2013, 344: 19-33. doi: 10.1016/j.margeo.2013.07.003

    [58]

    Goodbred S L Jr, Saito Y. Tide-dominated deltas[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. Dordrecht: Springer, 2012: 129-149.

    [59]

    de Fátima Rossetti D, Polizel S P, Cohen M C L, et al. Late Pleistocene-Holocene evolution of the Doce River delta, southeastern Brazil: implications for the understanding of wave-influenced deltas [J]. Marine Geology, 2015, 367: 171-190. doi: 10.1016/j.margeo.2015.05.012

    [60]

    Qi Y L, Yu Q, Gao S, et al. Morphological evolution of river mouth spits: wave effects and self-organization patterns [J]. Estuarine, Coastal and Shelf Science, 2021, 262: 107567. doi: 10.1016/j.ecss.2021.107567

    [61]

    Yang S L, Belkin I M, Belkina A I, et al. Delta response to decline in sediment supply from the Yangtze River: evidence of the recent four decades and expectations for the next half-century [J]. Estuarine, Coastal and Shelf Science, 2003, 57(4): 689-699. doi: 10.1016/S0272-7714(02)00409-2

    [62]

    Gao S, Wang Y P, Gao J H. Sediment retention at the Changjiang sub-aqueous delta over a 57 year period, in response to catchment changes [J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 29-38. doi: 10.1016/j.ecss.2011.07.015

    [63]

    Li G C, Zhou L, Qi Y L, et al. Threshold sediment flux for the formation of river deltas in Hainan Island, southern China [J]. Journal of Geographical Sciences, 2019, 29(1): 146-160. doi: 10.1007/s11442-019-1589-y

    [64]

    Day J W Jr, Boesch D F, Clairain E J, et al. Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita [J]. Science, 2007, 315(5819): 1679-1684. doi: 10.1126/science.1137030

    [65]

    Ta T K O, Nguyen V L, Tateishi M, et al. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam [J]. Quaternary Science Reviews, 2002, 21(16-17): 1807-1819. doi: 10.1016/S0277-3791(02)00007-0

    [66]

    吴超羽, 包芸, 任杰, 等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000~2 500a[J]. 海洋学报, 2006, 28(4):64-80

    WU Chaoyu, BAO Yun, REN Jie, et al. A numerical simulation and mophodynamic analysis on the evolution of the Zhujiang River Delta in China: 6000-2500 aBP [J]. Acta Oceanologica Sinica, 2006, 28(4): 64-80.

    [67]

    吴超羽, 韦惺. 从溺谷湾到三角洲: 现代珠江三角洲形成演变研究辨析[J]. 海洋学报, 2021, 43(1):1-26

    WU Chaoyu, WEI Xing. From drowned valley to delta: discrimination and analysis on issues of the formation and evolution of the Zhujiang River Delta [J]. Haiyang Xuebao, 2021, 43(1): 1-26.

    [68]

    Nittrouer C A, Kuehl S A, DeMaster D J, et al. The deltaic nature of Amazon shelf sedimentation [J]. GSA Bulletin, 1986, 97(4): 444-458. doi: 10.1130/0016-7606(1986)97<444:TDNOAS>2.0.CO;2

    [69]

    Milliman J D, Summerhayes C P, Barretto H T. Quaternary sedimentation on the Amazon continental margin: a model [J]. GSA Bulletin, 1975, 86(5): 610-614. doi: 10.1130/0016-7606(1975)86<610:QSOTAC>2.0.CO;2

    [70]

    Nittrouer C A, Kuehl S A. Geological significance of sediment transport and accumulation on the Amazon continental shelf [J]. Marine Geology, 1995, 125(3-4): 175-176. doi: 10.1016/0025-3227(95)00073-8

    [71]

    Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary [J]. Journal of Sea Research, 1999, 41(1-2): 129-140. doi: 10.1016/S1385-1101(98)00047-1

    [72]

    Rich J L. Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them [J]. GSA Bulletin, 1951, 62(1): 1-20. doi: 10.1130/0016-7606(1951)62[1:TCEODA]2.0.CO;2

    [73]

    Mathews W H, Shepard F P. Sedimentation of fraser river delta, british columbia [J]. AAPG Bulletin, 1962, 46(8): 1416-1438.

    [74]

    Kenyon P M, Turcotte D L. Morphology of a delta prograding by bulk sediment transport [J]. GSA Bulletin, 1985, 96(11): 1457-1465. doi: 10.1130/0016-7606(1985)96<1457:MOADPB>2.0.CO;2

    [75]

    Chillarige A V, Morgenstern N R, Robertson P K, et al. Seabed instability due to flow liquefaction in the Fraser River delta [J]. Canadian Geotechnical Journal, 1997, 34(4): 520-533. doi: 10.1139/T97-019

    [76]

    Maloney J M, Bentley S J, Xu K H, et al. Mass wasting on the Mississippi River subaqueous delta [J]. Earth-Science Reviews, 2020, 200: 103001. doi: 10.1016/j.earscirev.2019.103001

    [77]

    Wright L D, Wiseman W J Jr, Yang Z S, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River) [J]. Continental Shelf Research, 1990, 10(1): 1-40. doi: 10.1016/0278-4343(90)90033-I

    [78]

    Hill P R, Lintern D G. Turbidity currents on the open slope of the Fraser Delta [J]. Marine Geology, 2022, 445: 106738. doi: 10.1016/j.margeo.2022.106738

    [79]

    Friedrichs C T, Scully M E. Modeling deposition by wave-supported gravity flows on the Po River prodelta: from seasonal floods to prograding clinoforms [J]. Continental Shelf Research, 2007, 27(3-4): 322-337. doi: 10.1016/j.csr.2006.11.002

    [80]

    Cattaneo A, Correggiari A, Langone L, et al. The late-Holocene Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations [J]. Marine Geology, 2003, 193(1-2): 61-91. doi: 10.1016/S0025-3227(02)00614-X

    [81]

    Niedoroda A W, Reed C W, Das H, et al. Analyses of a large-scale depositional clinoformal wedge along the Italian Adriatic coast [J]. Marine Geology, 2005, 222-223: 179-192. doi: 10.1016/j.margeo.2005.06.012

    [82]

    Liu J P, Kuehl S A, Pierce A C, et al. Fate of ayeyarwady and thanlwin rivers sediments in the Andaman sea and bay of bengal [J]. Marine Geology, 2020, 423: 106137. doi: 10.1016/j.margeo.2020.106137

    [83]

    金翔龙. 东海海洋地质[M]. 北京: 海洋出版社, 1992: 1-524

    JIN Xianglong. Marine Geology of the East China Sea[M]. Beijing: China Ocean Press, 1992: 1-524.

    [84]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea [J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    [85]

    李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4):705-727

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea [J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705-727.

    [86]

    Liu J, Qiu J D, Saito Y, et al. Late Pleistocene to Holocene facies architecture and sedimentary evolution of the Zhejiang coast, East China Sea [J]. Marine Geology, 2023, 459: 107027. doi: 10.1016/j.margeo.2023.107027

    [87]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    [88]

    Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031

    [89]

    Liu Y L, Gao S, Wang Y P, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea [J]. Marine Geology, 2014, 347: 43-57. doi: 10.1016/j.margeo.2013.10.012

    [90]

    Lee H J, Jeon C K, Lim H S. Dynamical analysis of the mud-belt formation in the Bohai, Yellow and East China seas [J]. Marine Geology, 2020, 423: 106140. doi: 10.1016/j.margeo.2020.106140

    [91]

    Sternberg R W, Cacchione D A, Paulso B, et al. Observations of sediment transport on the Amazon subaqueous delta [J]. Continental Shelf Research, 1996, 16(5-6): 697-715. doi: 10.1016/0278-4343(95)00045-3

    [92]

    Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology [J]. Sedimentary Geology, 2003, 162(1-2): 25-38. doi: 10.1016/S0037-0738(03)00234-3

    [93]

    任美鍔. 珠江河口动力地貌特征及海滩利用問题[J]. 南京大学学报:自然科学版, 1964, 8(1):135-147

    REN Meie. Dynamic geomorphology and beach utilization of the Pearl River Estuary [J]. Journal of Nanjing University:Natural Sciences, 1964, 8(1): 135-147.

    [94]

    Owen R B. Modern fine-grained sedimentation - spatial variability and environmental controls on an inner pericontinental shelf, Hong Kong [J]. Marine Geology, 2005, 214(1-3): 1-26. doi: 10.1016/j.margeo.2004.11.004

    [95]

    薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献: 以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89

    XUE Chengfeng, JIA Jianjun, GAO Shu, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: results from Jiaojiang River and Oujiang River [J]. Haiyang Xuebao, 2018, 40(5): 75-89.

    [96]

    Suter J R, Berryhill H L Jr. Late Quaternary shelf-margin deltas, northwest Gulf of Mexico [J]. AAPG Bulletin, 1985, 69(1): 77-91.

    [97]

    Sydow J, Roberts H H. Stratigraphic framework of a late Pleistocene shelf-edge delta, northeast Gulf of Mexico [J]. AAPG Bulletin, 1994, 78(8): 1276-1312.

    [98]

    Porębski S J, Steel R J. Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands [J]. Earth-Science Reviews, 2003, 62(3-4): 283-326. doi: 10.1016/S0012-8252(02)00161-7

    [99]

    Muto T, Steel R J. In defense of shelf‐edge delta development during falling and lowstand of relative sea level [J]. The Journal of Geology, 2002, 110(4): 421-436. doi: 10.1086/340631

    [100]

    Patruno S, Helland-Hansen W. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins [J]. Earth-Science Reviews, 2018, 185: 202-233. doi: 10.1016/j.earscirev.2018.05.016

    [101]

    Fielding L, Najman Y, Millar I, et al. The initiation and evolution of the River Nile [J]. Earth and Planetary Science Letters, 2018, 489: 166-178. doi: 10.1016/j.jpgl.2018.02.031

    [102]

    Hori K, Tanabe S, Saito Y, et al. Delta initiation and Holocene sea-level change: example from the Song Hong (Red River) delta, Vietnam [J]. Sedimentary Geology, 2004, 164(3-4): 237-249. doi: 10.1016/j.sedgeo.2003.10.008

    [103]

    Tamura T, Saito Y, Sieng S, et al. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland [J]. Quaternary Science Reviews, 2009, 28(3-4): 327-344. doi: 10.1016/j.quascirev.2008.10.010

    [104]

    Bolshiyanov D, Makarov A, Savelieva L. Lena River delta formation during the Holocene [J]. Biogeosciences, 2015, 12(2): 579-593. doi: 10.5194/bg-12-579-2015

    [105]

    Vespremeanu-Stroe A, Zăinescu F, Preoteasa L, et al. Holocene evolution of the Danube delta: an integral reconstruction and a revised chronology [J]. Marine Geology, 2017, 388: 38-61. doi: 10.1016/j.margeo.2017.04.002

    [106]

    Cho A, Cheong D, Kim J C, et al. Delta formation in the Nakdong River, Korea, during the Holocene as Inferred from the diatom assemblage [J]. Journal of Coastal Research, 2017, 33(1): 67-77. doi: 10.2112/JCOASTRES-D-15-00240.1

    [107]

    Anthony E J, Marriner N, Morhange C. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: from progradation to destruction phase?[J] Earth-Science Reviews, 2014, 139: 336-361.

    [108]

    Hanebuth T J J, Lantzsch H, Nizou J. Mud depocenters on continental shelves-appearance, initiation times, and growth dynamics [J]. Geo-Marine Letters, 2015, 35(6): 487-503. doi: 10.1007/s00367-015-0422-6

    [109]

    Li G C, Xia Q, Wang Y P, et al. Geometric modeling of Holocene large-river delta growth patterns, as constrained by environmental settings [J]. Science China Earth Sciences, 2021, 64(2): 318-328. doi: 10.1007/s11430-019-9708-6

    [110]

    Davis R A Jr. Depositional Systems: A Genetic Approach to Sedimentary Geology[M]. Englewood Cliffs: Prentice-Hall, 1983: 1-669.

    [111]

    Skolnick H. Stratigraphy of some Lower Cretaceous rocks of Black Hills area [J]. AAPG Bulletin, 1958, 42(4): 787-815.

    [112]

    Ferm J C, Williams E G. Characteristics of a carboniferous marine invasion in western pennsylvania [J]. Journal of Sedimentary Petrology, 1965, 35(2): 319-330.

    [113]

    Ferm J C, Cavaroc V V Jr. A nonmarine sedimentary model for the Allegheny rocks of West Virginia[M]//de Vries Klein G. Late Paleozoic and Mesozoic Continental Sedimentation, Northeastern North America. Boulder, Colorado: Geological Society of America Special, 1968: 1-19.

    [114]

    Brown L F Jr. Geometry and distribution of fluvial and deltaic sandstones (Pennsylvanian and Permian), north-central Texas [J]. Gulf Coast Association of Geological Societies Transactions, 1969, 19: 23-47.

    [115]

    Ferm J C. Allegheny deltaic deposits[C]//Morgan J P, Shaver R H. Deltaic Sedimentation, Modern and Ancient. Tulsa: SEPM Special Publication, 1970: 246-255.

    [116]

    Visher G S, Sandro S B, Phares R S. Pennsylvanian delta patterns and petroleum occurrences in eastern Oklahoma [J]. AAPG Bulletin, 1971, 55(8): 1206-1230.

    [117]

    Ferm J C. Carboniferous environmental models in eastern United States and their significance[M]//Briggs G. Carboniferous of the Southeastern United States. Geological Society of America, 1974: 79-95.

    [118]

    Bose P K, Eriksson P G, Sarkar S, et al. Sedimentation patterns during the Precambrian: a unique record? [J]. Marine and Petroleum Geology, 2012, 33(1): 34-68. doi: 10.1016/j.marpetgeo.2010.11.002

  • 加载中

(4)

计量
  • 文章访问数:  738
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2023-04-23
修回日期:  2023-05-22
录用日期:  2023-05-22
刊出日期:  2023-06-28

目录