冲绳海槽CLAM热液区低硫逸度热液成矿

张侠, 孙治雷. 冲绳海槽CLAM热液区低硫逸度热液成矿[J]. 海洋地质与第四纪地质, 2023, 43(5): 17-25. doi: 10.16562/j.cnki.0256-1492.2023072501
引用本文: 张侠, 孙治雷. 冲绳海槽CLAM热液区低硫逸度热液成矿[J]. 海洋地质与第四纪地质, 2023, 43(5): 17-25. doi: 10.16562/j.cnki.0256-1492.2023072501
ZHANG Xia, SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 17-25. doi: 10.16562/j.cnki.0256-1492.2023072501
Citation: ZHANG Xia, SUN Zhilei. Low sulfur fugacity mineralization in CLAM hydrothermal field[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 17-25. doi: 10.16562/j.cnki.0256-1492.2023072501

冲绳海槽CLAM热液区低硫逸度热液成矿

  • 基金项目: 国家自然科学基金面上项目“海洋甲烷拦截带对冷泉流体的消耗研究:来自南海东沙海域的观测与研究”(42176057)
详细信息
    作者简介: 张侠(1991—),男,博士,助理研究员,主要从事现代海底热液成矿研究,E-mail:xzhang4@qnlm.ac;15954227127@163.com
  • 中图分类号: P736

Low sulfur fugacity mineralization in CLAM hydrothermal field

  • 冲绳海槽是琉球俯冲系统的重要组成部分,该区热液硫化物研究对揭示非成熟弧后盆地内部热液成矿作用特征具有重要意义。CLAM热液区位于冲绳海槽中部(27°33′N、126°58′E),大量研究表明,该区成矿作用特征与海槽其他热液区存在显著差异,但其成因尚不明确。对CLAM热液区硫化物矿物组成、共生组合关系及闪锌矿微区元素组成进行了系统分析测试,在此基础上提出,该区特殊的矿物学特征及矿物化学组成可能受热液流体硫逸度控制。本文研究样品为富Fe型块状硫化物,主要由磁黄铁矿及低温闪锌矿组成,磁黄铁矿的大量结晶暗示着该区热液流体具有低硫逸度特征。热液成矿过程中,流体温度及硫逸度经历了由低到高的演化。闪锌矿中极高的Fe含量同样受控于该区流体低硫逸度条件,计算结果表明,热液流体的硫逸度值为–15,与其他受沉积物影响的热液活动区一致。流体-沉积物反应过程中,沉积物中有机质的分解可能是导致CLAM热液区热液流体硫逸度系统性降低的主要原因。

  • 加载中
  • 图 1  冲绳海槽地质地形图

    Figure 1. 

    图 2  冲绳海槽CLAM热液区硫化物样品照片

    Figure 2. 

    图 3  冲绳海槽CLAM热液区硫化物典型结构镜下照片

    Figure 3. 

    图 4  典型热液区闪锌矿log $f_{{\rm S}_2} $-温度判别图

    Figure 4. 

    表 1  冲绳海槽CLAM热液区闪锌矿电子探针分析结果

    Table 1.  The EMPA analysis results of hydrothermal deposits from CLAM site, Okinawa Trough %

    ID S Zn Fe Cu Pb Co Ni 总量 FeS值
    TVG5-1 35.50 42.98 20.23 0.62 99.33 22.33
    34.81 43.12 20.55 1.45 0.04 0.02 99.99 22.70
    34.72 45.36 19.00 0.07 0.02 0.15 0.01 99.36 21.05
    34.86 45.08 19.32 0.13 0.12 99.55 21.39
    35.56 40.21 21.74 1.52 0.07 0.05 0.08 99.23 23.91
    34.71 43.48 20.13 0.22 0.05 0.08 0.05 98.70 22.24
    34.42 45.15 18.91 0.46 0.05 98.98 20.96
    34.78 37.53 24.10 1.75 0.05 0.04 0.07 98.31 26.35
    34.74 44.49 19.32 0.11 98.66 21.39
    34.70 42.55 20.95 0.15 0.24 0.05 0.06 98.70 23.09
    35.05 42.29 21.90 0.40 0.07 99.72 24.11
    34.36 47.83 16.91 0.19 0.09 0.08 99.50 18.83
    34.45 45.28 18.47 0.34 0.16 0.09 0.01 98.84 20.49
    34.34 42.22 20.37 1.66 0.07 98.66 22.49
    34.32 42.00 20.84 1.21 0.17 0.02 0.05 98.64 22.98
    34.74 39.73 23.95 0.24 0.12 0.10 98.88 26.22
    35.08 39.33 24.06 0.38 0.02 98.94 26.33
    34.88 41.74 22.22 0.10 0.03 0.09 0.06 99.11 24.42
    TVG5-3 34.96 30.40 25.31 6.51 0.20 97.43 27.54
    34.29 46.92 15.05 0.11 0.18 0.03 96.58 16.82
    34.25 44.25 16.67 0.04 0.02 0.04 0.01 95.31 18.54
    34.41 47.77 14.80 0.12 97.16 16.55
    33.56 45.66 16.91 0.03 96.17 18.82
    34.03 46.57 15.69 0.10 96.41 17.50
    34.45 33.37 23.05 5.15 0.05 0.07 96.13 25.21
    34.75 37.26 20.42 4.24 0.03 0.11 0.01 96.82 22.48
    34.50 40.05 20.48 0.28 95.30 22.54
    34.74 40.12 19.00 2.39 0.09 0.14 96.50 21.00
    34.42 44.21 17.67 0.21 0.01 0.06 96.61 19.61
    34.91 36.63 19.34 5.11 0.15 0.05 96.24 21.34
    注:“—”表示测试值低于仪器检出限。
    下载: 导出CSV
  • [1]

    Edmond J M, Measures C, McDuff R E, et al. Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data[J]. Earth and Planetary Science Letters, 1979, 46(1): 1-18. doi: 10.1016/0012-821X(79)90061-X

    [2]

    Baker E T, German C R. On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington: American Geophysical Union, 2004: 245-267.

    [3]

    de Ronde C E J, Stucker V K. Seafloor hydrothermal venting at volcanic arcs and backarcs[M]//Sigurdsson H. The Encyclopedia of Volcanoes. 2nd ed. Amsterdam: Elsevier, 2015: 823-849.

    [4]

    Hannington M D, de Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 111-141.

    [5]

    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224. doi: 10.1146/annurev.earth.24.1.191

    [6]

    Rouxel O, Shanks III W C, Bach W, et al. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N[J]. Chemical Geology, 2008, 252(3-4): 214-227. doi: 10.1016/j.chemgeo.2008.03.009

    [7]

    Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation[J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014

    [8]

    Zhang X, Sun Z L, Wu N Y, et al. Mantle plume plays an important role in modern seafloor hydrothermal mineralization system[J]. Geochimica et Cosmochimica Acta, 2023, 352: 211-221. doi: 10.1016/j.gca.2023.05.012

    [9]

    Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough[J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    [10]

    Zhang X, Zhai S K, Sun Z L, et al. Rare earth elements and Sr, S isotope compositions of hydrothermal deposits from the Okinawa Trough: insight into mineralization condition and metal sources[J]. Marine Geology, 2022, 443: 106683. doi: 10.1016/j.margeo.2021.106683

    [11]

    Zhang X, Sun Z L, Wu N Y, et al. Polyphase hydrothermal sulfide mineralization in the Minami-Ensei hydrothermal field, middle Okinawa Trough: implications from sulfide mineralogy and in situ geochemical composition of pyrite[J]. Ore Geology Reviews, 2022, 149: 105055. doi: 10.1016/j.oregeorev.2022.105055

    [12]

    Wang H, Chu F Y, Li X H, et al. Mineralogy, geochemistry, and Sr-Pb and in situ S isotopic compositions of hydrothermal precipitates from the Tangyin hydrothermal field, southern Okinawa Trough: evaluation of the contribution of magmatic fluids and sediments to hydrothermal systems[J]. Ore Geology Reviews, 2020, 126: 103742. doi: 10.1016/j.oregeorev.2020.103742

    [13]

    Wang S J, Sun W D, Huang J, et al. S, Pb, and Fe isotope compositions of sulfides in middle and southern Okinawa Trough: implying the complicated hydrothermal systems in back-arc spreading centers[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2023, 195: 104006. doi: 10.1016/j.dsr.2023.104006

    [14]

    Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa trough back-arc basin[J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x

    [15]

    胡思谊, 曾志刚, 殷学博, 等. 冲绳海槽岩心沉积物稀土元素特征及物源指示[J]. 海洋地质与第四纪地质, 2019, 39(1): 69-82 doi: 10.16562/j.cnki.0256-1492.2017082301

    HU Siyi, ZENG Zhigang, YIN Xuebo, et al. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301

    [16]

    Zhang X, Li L F, Du Z F, et al. Discovery of supercritical carbon dioxide in a hydrothermal system[J]. Science Bulletin, 2020, 65(11): 958-964. doi: 10.1016/j.scib.2020.03.023

    [17]

    Tian F F, Li R, Xie G Z, et al. The formation of supercritical carbon dioxide hydrothermal vents in the Okinawa Trough[J]. Science Bulletin, 2023, 68(2): 154-156. doi: 10.1016/j.scib.2022.12.032

    [18]

    Dekov V M, Yasuda K, Kamenov G, et al. Mn-carbonate deposition in a seafloor hydrothermal system (CLAM field, Iheya Ridge, Okinawa Trough): insights from mineralogy, geochemistry and isotope studies[J]. Marine Geology, 2023, 460: 107055. doi: 10.1016/j.margeo.2023.107055

    [19]

    Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1

    [20]

    Zhang X, Zhai S K, Yu Z H, et al. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough[J]. Ore Geology Reviews, 2019, 111: 102944. doi: 10.1016/j.oregeorev.2019.102944

    [21]

    Kimura M, Kaneoka I, Kato Y, et al. Report on DELP 1984 cruises in the middle Okinawa Trough: Part V. Topography and geology of the central grabens and their vicinity[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1986, 61(2): 269-310.

    [22]

    Honma H, Kusakabe M, Kagami H, et al. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin[J]. Geochemical Journal, 1991, 25(2): 121-136. doi: 10.2343/geochemj.25.121

    [23]

    Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7

    [24]

    Kimura M, Uyeda S, Kato Y, et al. Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan[J]. Tectonophysics, 1988, 145(3-4): 319-324. doi: 10.1016/0040-1951(88)90203-X

    [25]

    Kinoshita M, Yamano M, Post J, et al. Heat flow measurements in the southern and middle Okinawa Trough on R/V sonne in 1988[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1990, 65(3): 571-588.

    [26]

    Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    [27]

    Cao H, Sun Z L, Liu C L, et al. Origin of natural sulfur-metal chimney in the Tangyin hydrothermal field, Okinawa Trough: constraints from rare earth element and sulfur isotopic compositions[J]. China Geology, 2018, 1(2): 225-235. doi: 10.31035/cg2018023

    [28]

    Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020, 120: 103464. doi: 10.1016/j.oregeorev.2020.103464

    [29]

    Nozaki T, Nagase T, Ushikubo T, et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 2021, 49(2): 222-227. doi: 10.1130/G47943.1

    [30]

    Ishibashi J, Sano Y, Wakita H, et al. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan[J]. Chemical Geology, 1995, 123(1-4): 1-15. doi: 10.1016/0009-2541(95)00051-M

    [31]

    Nakashima K, Sakai H, Youshida H, et al. Hydrothermal mineralization at the Okinawa Trough[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publication, 1995: 487-508.

    [32]

    Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133

    [33]

    Gamo T, Sakai H, Kim E S, et al. High alkalinity due to sulfate reduction in the CLAM hydrothermal field, Okinawa Trough[J]. Earth and Planetary Science Letters, 1991, 107(2): 328-338. doi: 10.1016/0012-821X(91)90080-2

    [34]

    Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan[J]. Economic Geology, 1993, 88(8): 2210-2225. doi: 10.2113/gsecongeo.88.8.2210

    [35]

    Wang Y J, Han X Q, Petersen S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2017, 84: 1-19. doi: 10.1016/j.oregeorev.2016.12.020

    [36]

    Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 124-131. doi: 10.1016/j.jmarsys.2016.11.007

    [37]

    Gena K, Chiba H, Kase K, et al. The tiger sulfide chimney, yonaguni knoll IV hydrothermal field, southern Okinawa Trough, Japan: the first reported occurrence of Pt-Cu-Fe-bearing bismuthinite and Sn-bearing chalcopyrite in an active seafloor hydrothermal system[J]. Resource Geology, 2013, 63(4): 360-370. doi: 10.1111/rge.12015

    [38]

    Zhang X, Sun Z L, Wu N Y. Fe-Pb-Sr isotopic systematics of the hydrothermal chimney from the Minami-Ensei hydrothermal field, middle Okinawa Trough: constraint on hydrothermal mineralization process in incipient back-arc basin[J]. Ore Geology Reviews, 2023, 154: 105332. doi: 10.1016/j.oregeorev.2023.105332

    [39]

    Koski R A, Lonsdale P F, Shanks W C, et al. Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the Southern Trough of Guaymas Basin, Gulf of California[J]. Journal of Geophysical Research, 1985, 90(B8): 6695-6707. doi: 10.1029/JB090iB08p06695

    [40]

    Zierenberg R A, Koski R A, Morton J L, et al. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge[J]. Economic Geology, 1993, 88(8): 2069-2098. doi: 10.2113/gsecongeo.88.8.2069

    [41]

    Hannington M D, Jonasson I R, Herzig P M, et al. Physical and chemical processes of seafloor mineralization at mid-ocean ridges[M]//Humphris S E, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 115-157.

    [42]

    Hannington M D, Scott S D. Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: evidence from sulfide mineralogy and the composition of sphalerite[J]. Economic Geology, 1989, 84(7): 1978-1995. doi: 10.2113/gsecongeo.84.7.1978

    [43]

    Herzig P M, Hannington M D, Fouquet Y, et al. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific[J]. Economic Geology, 1993, 88(8): 2182-2209. doi: 10.2113/gsecongeo.88.8.2182

    [44]

    Hirotome U, Hiroshi H, Yuuka M, et al. Ore and gangue minerals of sulfide chimneys from the North Knoll, Iheya ridge, Okinawa trough, Japan[J]. JAMSTEC Deep Sea Research, 2003, 22: 49-62.

    [45]

    Wu N Y, Xu C L, Li A, et al. Oceanic carbon cycle in a symbiotic zone between hydrothermal vents and cold seeps in the Okinawa Trough[J]. Geosystems and Geoenvironment, 2022, 1(3): 100059. doi: 10.1016/j.geogeo.2022.100059

    [46]

    Meng X W, Li X H, Chu F Y, et al. Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1°-2°S)[J]. Ore Geology Reviews, 2020, 116: 103209. doi: 10.1016/j.oregeorev.2019.103209

  • 加载中

(4)

(1)

计量
  • 文章访问数:  478
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2023-07-25
修回日期:  2023-08-21
录用日期:  2023-08-21
刊出日期:  2023-10-28

目录