基性-超基性岩碳酸盐化固碳效应研究进展

邱添, 曾令森, 申婷婷. 2021. 基性-超基性岩碳酸盐化固碳效应研究进展. 中国地质调查, 8(4): 20-32. doi: 10.19388/j.zgdzdc.2021.04.03
引用本文: 邱添, 曾令森, 申婷婷. 2021. 基性-超基性岩碳酸盐化固碳效应研究进展. 中国地质调查, 8(4): 20-32. doi: 10.19388/j.zgdzdc.2021.04.03
QIU Tian, ZENG Lingsen, SHEN Tingting. 2021. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks. Geological Survey of China, 8(4): 20-32. doi: 10.19388/j.zgdzdc.2021.04.03
Citation: QIU Tian, ZENG Lingsen, SHEN Tingting. 2021. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks. Geological Survey of China, 8(4): 20-32. doi: 10.19388/j.zgdzdc.2021.04.03

基性-超基性岩碳酸盐化固碳效应研究进展

  • 基金项目:

    国家自然科学基金"新疆萨尔托海石英菱镁岩相关的金矿床成矿流体特征及其对矿床成因的限定(编号: 41703053)"、"喜马拉雅造山带中生代岩浆作用与印度大陆北缘构造动力学过程(编号: 92055202)"、"西南天山超深蛇纹岩和其包裹的榴辉岩岩石学及其折返机制研究(编号: 41782072)”,第二次青藏高原科学考察“典型地区岩石圈组成、演化与深部过程(编号: 2019QZKK0702)”,中国地质调查局“全国地质碳汇碳储评价与区划(编号: DD20221817)”,中国地质科学院地质研究所基本科研业务费"阿尔巴尼亚布尔齐泽不同类型铬铁矿中的矿物包裹体特征及指示意义(编号: J1903)"、"喜马拉雅造山带淡色花岗岩成因及成矿效应(编号: J1901)"和南方海洋科学与工程广东省实验室( 广州) 人才团队引进重大专项“大洋钻探科学研究——南海重大基础地质问题与首钻选址(编号: GML2019ZD0201)”项目联合资助

详细信息
    作者简介: 邱添(1987—),女,助理研究员,主要从事矿床地球化学研究工作。Email: tianqiu@pku.edu.cn。
    通讯作者: 曾令森(1970—),男,研究员,从事构造地质和地球化学研究工作。Email: lzeng1970@163.com。
  • 中图分类号: P588;P59;X14

Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks

More Information
    Corresponding author: ZENG Lingsen
  • 人为排放CO2导致全球气候变暖已经对人类生存和发展造成威胁,碳捕获与封存是世界公认的实现碳减排的主要途径之一。基性-超基性岩碳酸盐化固碳作为地质碳汇之一,是一种经济、安全且长久的碳捕获与封存方式,引起了国际社会越来越多的重视。本文阐述了自然条件下基性-超基性岩碳酸盐化反应过程,分析其固碳机理和影响基性-超基性岩碳酸盐化速率的主要因素。在此基础上,梳理并总结了目前国际上基性-超基性岩固碳技术的研究进展和典型应用实例,认为全球广泛分布的基性-超基性岩具有巨大的固碳潜力。该技术的推广和应用将对未来大气CO2减排具有重要意义。
  • 加载中
  • [1]

    IPCC.Climate change:synthesis report[M]//Core Writing Team,Pachauri R K,Meyer L A.Contribution of Working Groups I,II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Geneva,Switzerland:IPCC,2014.

    [2]

    Blunden J,Arndt D S.State of the climate in 2018[J].Bull Am Meteor Soc,2019,100(9):S1-S306.

    [3]

    United Nations Framework Convention on Climate Change.Report of the conference of the Parties on its twenty-first session[R]. Paris:UNFCCC,2016.

    [4]

    Intergovernmental panel on climate change.Global Warming of 1.5 ℃[R].IPCC,2018.

    [5]

    International Energy Agency.World energy outlook 2017[R].IEA,2017.

    [6]

    Mani D,Charan S N,Kumar B.Assessment of carbon dioxide sequestration potential of ultramafic rocks in the greenstone belts of Southern India[J].Curr Sci,2008,94(1):53-60.

    [7]

    Metz B,Davidson O,de Coninck H,et al.IPCC special report on carbon dioxide capture and storage[R].Cambridge:Cambridge University Press,2005:195-276.

    [8]

    Suekane T,Nobuso T,Hirai S,et al.Geological storage of carbon dioxide by residual gas and solubility trapping[J].Int J Greenh Gas Control,2008,2(1):58-64.

    [9]

    Gentzis T.Subsurface sequestration of carbon dioxide——An overview from an Alberta (Canada) perspective[J].Int J Coal Geol,2000,43(1-4):287-305.

    [10]

    李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968.

    [11]

    Li X C,Liu Y F,Bai B,et al.Ranking and screening of CO2 saline aquifer storage zones in China[J].Chin J Rock Mech Eng,2006,25(5):963-968.

    [11]

    张炜,李义连,郑艳,等.二氧化碳地质封存中的储存容量评估:问题和研究进展[J].地球科学进展,2008,23(10):1061-1069.

    [13]

    Zhang W,Li Y L,Zheng Y,et al.CO2 storage capacity estimation in geological sequestration:Issus and research progress[J].Adv Earth Sci,2008,23(10):1061-1069.

    [12]

    Bachu S,Adams J J.Sequestration of CO2 in geological media in response to climate change:Capacity of deep saline aquifers to sequester CO2 in solution[J].Energy Convers Manage,2003,44(20):3151-3175.

    [13]

    Snæbjörnsdóttir S Ó,Sigfússon B,Marieni C,et al.Carbon dioxide storage through mineral carbonation[J].Nat Rev Earth Environ,2020,1(2):90-102.

    [14]

    Seifritz W.CO2 disposal by means of silicates[J].Nature,1990,345(6275):486.

    [15]

    Lackner K S,Wendt C H,Butt D P,et al.Carbon dioxide disposal in carbonate minerals[J].Energy,1995,20(11):1153-1170.

    [16]

    盛雪芬,季峻峰,陈骏.中国超基性岩封存CO2的潜力研究[J].第四纪研究,2011,31(3):447-454.

    [19]

    Sheng X F,Ji J F,Chen J.Assessment of carbon dioxide sequestration potential of ultramafic rocks in China[J].Quat Sci,2011,31(3):447-454.

    [17]

    Matter J M,Kelemen P B.Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J].Nat Geosci,2009,2(12):837-841.

    [18]

    Kelemen P B,Matter J M,Streit E E,et al.Rates and mechanisms of mineral carbonation in peridotite:Natural processes and recipes for enhanced,in situ CO2 capture and storage[J].Annu Rev Earth Planet Sci,2011,39:545-576.

    [19]

    Ellis A J.The solubility of calcite in carbon dioxide solutions[J].Am J Sci,1959,257(5):354-365.

    [20]

    Ellis A J.The solubility of calcite in sodium chloride solutions at high temperatures[J].Am J Sci,1963,261(3):259-267.

    [21]

    Saldi G D,Jordan G,Schott J,et al.Magnesite growth rates as a function of temperature and saturation state[J].Geochim Cosmochim Acta,2009,73(19):5646-5657.

    [22]

    Johnson N C,Thomas B,Maher K,et al.Olivine dissolution and carbonation under conditions relevant for in situ carbon stora-ge[J].Chem Geol,2014,373:93-105.

    [23]

    Gadikota G,Matter J,Kelemen P,et al.Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3[J].Phys Chem Chem Phys,2014,16(10):4679-4693.

    [24]

    Turvey C C,Wilson S A,Hamilton J L,et al.Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine,New South Wales,Australia:controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings[J].Int J Greenh Gas Control,2018,79:38-60.

    [25]

    Gras A,Beaudoin G,Molson J,et al.Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project,Quebec,Canada[J].Chem Geol,2020,546:119661.

    [26]

    Gaillardet J,Dupré B,Louvat P,et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J].Chem Geol,1999,159(1-4):3-30.

    [27]

    Berner R A,Kothavala Z.Geocarb III:a revised model of atmospheric CO2 over phanerozoic time[J].Am J Sci,2001,301(2):182-204.doi:10.2475/ajs.301.2.182.

    [28]

    Oelkers E H,Gislason S R,Matter J.Mineral carbonation of CO2[J].Elements,2008,4(5):333-337.

    [29]

    Gadikota G.Carbon mineralization pathways for carbon capture,storage and utilization[J].Commun Chem,2021,4(1):23.

    [30]

    White A F.Natural weathering rates of silicate minerals[J].Treatise Geochem,2003,5:133-168.

    [31]

    Kelemen P B,Matter J M.In situ carbonation of peridotite for CO2 storage[J].Proc Natl Acad Sci USA,2008,105(45):17295-17300.

    [32]

    Macdonald F A,Swanson-Hysell N L,Park Y,et al.Arc-continent collisions in the tropics set Earth’s climate state[J].Science,2019,364(6436):181-184.

    [33]

    吴卫华,郑洪波,杨杰东,等.硅酸盐风化与全球碳循环研究回顾及新进展[J].高校地质学报,2012,18(2):215-224.

    [37]

    Wu W H,Zheng H B,Yang J D,et al.Review and advancements of studies on silicate weathering and the global carbon cycle[J].Geol J China Univ,2012,18(2):215-224.

    [34]

    Kappel E S,Ryan W B F.Volcanic episodicity and a non-steady state rift valley along northeast Pacific spreading centers:evidence from Sea MARC I[J].J Geophys Res:Solid Earth,1986,91(B14):13925-13940.

    [35]

    Karson J A.Geologic structure of the uppermost oceanic crust created at fast-to intermediate-rate spreading centers[J].Annu Rev Earth Planet Sci,2002,30:347-384.

    [36]

    Alt J C,Teagle D A H.The uptake of carbon during alteration of ocean crust[J].Geochim Cosmochim Acta,1999,63(10):1527-1535.

    [37]

    Coogan L A,Parrish R R,Roberts N M W.Early hydrothermal carbon uptake by the upper oceanic crust:insight from in situ U-Pb dating[J].Geology,2016,44(2):147-150.

    [38]

    Wiese F,Fridriksson T,Ármannsson H.CO2 fixation by calcite in high-temperature geothermal systems in Iceland.ÍSOR report-2008/003[R].Iceland:Iceland Geosurvey,2008:1-68.

    [39]

    Snæbjörnsdóttir S Ó,Wiese F,Fridriksson T,et al.CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges[J].Energy Procedia,2014,63:4585-4600.

    [40]

    O’Hanley D S.Serpentinites:recorders of tectonic and petrological history[M].New York:Oxford University Press,1996:1-277.

    [41]

    Kerrick D M,Connolly A D.Subduction of ophicarbonates and recycling of CO2 and H2O[J].Geology,1998,26(4):375-378.

    [42]

    Falk E S,Kelemen P B.Geochemistry and petrology of listvenite in the Samail ophiolite,Sultanate of Oman:Complete carbonation of peridotite during ophiolite emplacement[J].Geochim Cosmochim Acta,2015,160:70-90.

    [43]

    Kelemen P B,Manning C E.Reevaluating carbon fluxes in subduction zones,what goes down,mostly comes up[J].Proc Natl Acad Sci USA,2015,112(30):E3997-E4006.

    [44]

    Beinlich A,Plümper O,Müller I A,et al.Ultramafic rock carbonation: constraints from listvenite core BT1B,Oman drilling pro-ject[J].J Geophys Res:Solid Earth,2020,125(6):e2019JB019060.

    [45]

    Menzel M D,Urai J L,de Obeso J C,et al.Brittle deformation of carbonated peridotite:insights from listvenites of the Samail ophiolite (Oman drilling project hole BT1B)[J].J Geophys Res:Solid Earth,2020,125(10):e2020JB020199.

    [46]

    Hansen L D.Geological setting of listwanite,Atlin,BC:implications for carbon diozide sequestration and lode-gold mineraliza-tion[M].Vancouver:University of British Columbia,2005.

    [47]

    Zhang L,Yang J S,Robinson P T,et al.Origin of listwanite in the luobusa ophiolite,Tibet:implications for chromite stability in hydrothermal systems[J].Acta Geol Sin (Engl Ed),2015,89(2):402-417.

    [48]

    Qiu T,Zhu Y F.Chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange,Xinjiang,NW Chi-na[J].J Asian Earth Sci,2018,159:155-184.

    [49]

    Halls C,Zhao R.Listvenite and related rocks:perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun,Co.Mayo,Republic of Ireland[J].Miner Depos,1995,30(3-4):303-313.

    [50]

    Uçurum A.Listwaenites in Turkey:perspectives on formation and precious metal concentration with reference to occurrences in east-central Anatolia[J].Ofioliti,2000,25(1):15-29.

    [51]

    Qiu T,Zhu Y F.Listwaenite in the Sartohay ophiolitic mélange (Xinjiang,China):A genetic model based on petrology,U-Pb chronology and trace element geochemistry[J].Lithos,2018,302-303:427-446.

    [52]

    Nicolas A,Boudier E,Ildefonse B,et al.Accretion of Oman and united Arab emirates ophiolite-discussion of a new structural map[J].Mar Geophys Res,2000,21(3-4):147-180.

    [53]

    邱添,朱永峰.新疆萨尔托海糜棱岩化石英菱镁岩元素地球化学特征及其对金成矿作用的贡献[J].岩石学报,2017,33(12):3829-3841.

    [58]

    Qiu T,Zhu Y F.Element geochemical characteristics of mylonitized listwaenite and its contribution to gold mineralization in Sartohay,Xinjiang[J].Acta Petrol Sin,2017,33(12):3829-3841.

    [54]

    Oelkers E H.An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentra-tions[J].Chem Geol,2001,175(3-4):485-494.

    [55]

    Oelkers E H,Gislason S R.The mechanism,rates and consequences of basaltic glass dissolution:I.An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al,Si and oxalic acid concentration at 25℃ and pH=3 and 11[J].Geochim Cosmochim Acta,2001,65(21):3671-3681.

    [56]

    Rimstidt J D,Brantley S L,Olsen A A.Systematic review of forsterite dissolution rate data[J].Geochim Cosmochim Acta,2012,99:159-178.

    [57]

    Gudbrandsson S,Wolff-Boenisch D,Gislason S R,et al.Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22℃[J].Geochim Cosmochim Acta,2014,139:154-172.

    [58]

    Andreani M,Luquot L,Gouze P,et al.Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites[J].Environ Sci Technol,2009,43(4):1226-1231.

    [59]

    Kelemen P B,Hirth G.Reaction-driven cracking during retrograde metamorphism:Olivine hydration and carbonation[J].Earth Planet Sci Lett,2012,345-348:81-89.

    [60]

    Godard M,Luquot L,Andreani M,et al.Incipient hydration of mantle lithosphere at ridges:A reactive-percolation experi-ment[J].Earth Planet Sci Lett,2013,371-372:92-102.

    [61]

    Farough A,Moore D E,Lockner D A,et al.Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions:An experimental study[J].Geochem,Geophys,Geosyst,2016,17(1):44-55.

    [62]

    Oelkers E H,Declercq J,Saldi G D,et al.Olivine dissolution rates:A critical review[J].Chem Geol,2018,500:1-19.

    [63]

    van Noort R,Wolterbeek T K T,Drury M R,et al.The force of crystallization and fracture propagation during in-situ carbonation of peridotite[J].Minerals,2017,7(10):190.

    [64]

    Crawshaw J P,Boek E.Reviews in mineralogy and geochemis-try[M]//DePaolo D J,Cole D R,Navrotsky A,et al.Geochemistry of Geologic CO2 Sequestration. Chantilly,Virginia:Mineralogical Society of America and the Geochemical Society,2013:305-360.

    [65]

    Sanna A,Uibu M,Caramanna G,et al.A review of mineral carbonation technologies to sequester CO2[J].Chem Soc Rev,2014,43(23):8049-8080.

    [66]

    Wilson S A,Dipple G M,Power I M,et al.Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits:examples from the Clinton Creek and Cassiar chrysotile deposits,Cana-da[J].Econ Geol,2009,104(1):95-112.

    [67]

    Harrison A L,Power I M,Dipple G M.Accelerated carbonation of brucite in mine tailings for carbon sequestration[J].Environ Sci Technol,2012,47(1):126-134.

    [68]

    Mervine E M,Wilson S A,Power I M,et al.Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite:an assessment of De Beers mine sites in South Africa and Canada[J].Mineral Petrol,2018,112(2):755-765.

    [69]

    Oskierski H C,Dlugogorski B Z,Jacobsen G.Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine,Australia:quantitative mineralogy,isotopic fingerprinting and carbonation rates[J].Chem Geol,2013,358:156-169.

    [70]

    Wilson S A,Harrison A L,Dipple G M,et al.Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine,Western Australia:Rates,controls and prospects for carbon neutral mining[J].Int J Greenh Gas Control,2014,25:121-140.

    [71]

    Gras A,Beaudoin G,Molson J,et al.Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi,Quebec)[J].Int J Greenh Gas Control,2017,60:10-23.

    [72]

    Turvey C C,Wilson S A,Hamilton J L,et al.Field-based accounting of CO2 sequestration in ultramafic mine wastes using portable X-ray diffraction[J].Am Mineral,2017,102(6):1302-1310.

    [73]

    Matter J M,Stute M,Snæbjörnsdóttir S Ó,et al.Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J].Science,2016,352(6291):1312-1314.

    [74]

    Von Strandmann P A E P,Burton K W,Snæbjörnsdóttir S Ó,et al.Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes[J].Nat Commun,2019,10(1):1983.

    [75]

    Gunnarsson I,Aradóttir E S,Oelkers E H,et al.The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J].Int J Greenh Gas Control,2018,79:117-126.

    [76]

    Sigfússon B,Arnarson M P,Snæbjörnsdóttir S Ó,et al.Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014-2017 and the role of CarbFix in achieving the 2040 Iceland climate goals[J].Energy Procedia,2018,146:135-145.

    [77]

    Clark D E,Gunnarsson I,Aradóttir E S,et al.The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site,Iceland[J].Energy Procedia,2018,146:121-128.

    [78]

    McGrail B P,Spane F A,Amonette J E,et al.Injection and monitoring at the Wallula basalt pilot project[J].Energy Procedia,2014,63:2939-2948.

    [79]

    McGrail B P,Schaef H T,Spane F A,et al.Wallula Basalt Pilot demonstration project:post-injection results and conclusions[J].Energy Procedia,2017,114:5783-5790.

    [80]

    Snæbjörnsdóttir S Ó,Oelkers E H,Mesfin K,et al.The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland[J].Int J Greenh Gas Control,2017,58:87-102.

    [81]

    Goldberg D S,Lackner K S,Han P,et al.Co-location of air capture,subseafloor CO2 sequestration,and energy production on the Kerguelen plateau[J].Environ Sci Technol,2013,47(13):7521-7529.

    [82]

    Goldberg D,Lackner K.Creating negative emissions at remote CO2 sequestration sites[J].Greenh Gases:Sci Technol,2015,5(3):238-240.

    [83]

    Gutknecht V,Snæbjörnsdóttir S Ó,Sigfússon B,et al.Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture[J].Energy Procedia,2018,146:129-134.

    [84]

    Goldberg D,Aston L,Bonneville A,et al.Geological storage of CO2 in sub-seafloor basalt:the CarbonSAFE pre-feasibility study offshore Washington State and British Columbia[J].Energy Procedia,2018,146:158-165.

  • 加载中
计量
  • 文章访问数:  1182
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2021-07-06
修回日期:  2021-08-20

目录