中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong. 2022. Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition. Journal of Groundwater Science and Engineering, 10(1): 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003
Citation: Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong. 2022. Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition. Journal of Groundwater Science and Engineering, 10(1): 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003

Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Table 1.  Concentration of CO2

    No.Depth/m2014Feb.2014Mar.2014Apr.2014 Jun.2015Feb.2015Oct.2016May2017Feb.2019Sept.2020June
    Temp. - 6℃ 14℃ 16℃ 26℃ 9℃ 20℃ 22℃ 5℃ 21℃ 25℃
    In air - 410 430 410 410 410 390 410 410 410 410
    LTC1 1.9 5 740 4 350 5 740 11 190 2 520 4 810 3 760 1 130 4 130 4 110
    LTC2 3.1 3 540 3 430 3 890 4 810 2 240 4 240 2 870 1 130 2 150 2 670
    LTC3 4.1 3 090 2 930 3 320 4 170 1 970 3 400 2 670 1 540 2 990 2 300
    LTC4 5.2 2 370 2 310 2 720 3 650 1 380 2 530 2 060 1 180 2 410 1 880
    LTC5 6.1 2 560 2 270 2 630 3 340 1 340 2 300 1 760 1 130 2 230 1 920
    LTC6 7.1 2 340 2 200 2 450 3 030 1190 1 930 1 780 830 2650 1 670
    LTC7 8.2 1 440 2 700 N.d. N.d. N.d. N.d. N.d. N.d. N.d. N.d.
    N.d.=no data. The monitoring tube of LTC7 was destroyed since April of 2014.
    下载: 导出CSV

    Table 2.  Results of the efflux of CO2 and water vapor

    Depth/mCO2 /g·m−2·d−1H2O /g·m−2·d−1
    D. T.   Oct.,
    2015
    May, 2016 Feb., 2017 Oct., 2015 May, 2016 Feb., 2017
    Temp.
    (Weather)
      20℃ (Cloudy) 22℃ (Sunny) 5℃
    (Sunny)
    20℃ (Cloudy) 22℃ (Sunny) 5℃
    (Sunny)
    Surface 0.0 11.53 16.02 3.48 112.14 155.88 182.16
    LTC1 1.9 0.47 18.83 2.91 15.36 56.74 4.85
    LTC2 3.0 1.42 2.30 0.14 3.83 64.89 62.17
    LTC3 4.1 1.31 1.20 0.47 41.38 216.90 8.12
    LTC4 5.1 0.32 2.96 0.07 83.05 172.76 5.08
    LTC5 6.1 2.99 2.72 0.54 21.17 361.26 76.07
    LTC6 7.1 0.84 5.02 0.37 18.63 390.06 87.23
    LTC7 8.2 3.86 2.75 0.32 264.60 386.46 229.32
    Mean - 1.60 5.11 0.69 64.00 235.58 67.55
    D. T.=determination time; All the observations were done at 10:00 a. m. of the set testing date. Mean=the average value of these 7 observed results in the LTC profile.
    下载: 导出CSV

    Table 3.  Results of SOC SIC and δ13C at the observed layers and related calculated values

    No.Depth (m)SOC (%)SIC (%)δ13CSOC (‰)δ13CCO2
    (‰)
    Δδ13C
    (‰)
    CO2-SOC
    %
    CO2-Carb
    %
    LTC1 1.9 0.083 1.911 –22.8 –20.45 2.35 82.48 17.52
    LTC2 3.0 0.057 1.745 –22.9 –20.87 2.03 85.21 14.79
    LTC3 4.1 0.077 1.842 –23.4 –21.27 2.13 87.85 12.15
    LTC4 5.1 0.060 1.086 –23.4 –19.57 3.83 76.62 23.38
    LTC5 6.1 0.035 2.361 –23.6 –19.31 4.29 74.89 25.11
    LTC6 7.1 0.077 1.129 –23.2 –19.22 3.98 74.28 25.72
    Mean 0.065 1.679 –23.2 –20.11 3.10 80.22 19.78
    Δδ13C=δ13CCO213CSOC; CO2-SOC: SOC-derived CO2; CO2-Carb: carbonate-derived CO2
    下载: 导出CSV

    Table 4.  Characteristics of soil CO2 in different unsaturated zone in the world

    No.LocationThickness of unsaturated ZoneType of soilMaximum depth for observation (observation solution)Characteristics of soil CO2Variation of CO2 concentration with depthRef.
    1 The U.S. Geological Survey’s Amargosa Desert Research Site 110 m Predominantly sand and gravel (unconsolidated debris flow, fluvial, and alluvial-fan deposits) 110 m; Maximum: 105 μL/L Increase (Thorstenson et al. 1998; Walvoord, et al. 2005)
    2 Dalmeny site: 30 km northern of Saskatoon, Canada 7.0 m Clay mainly 6.8 m (0.4, 0.9, 1.7, 3.0, 4.7, 6.8 m) 39 000 μL/L Increase (Keller and Bacon, 1998)
    3 Rifle site in western Colorado, USA (Experiment site of U.S. Department of Energy (DOE) 3.5 m Unconsolidated gravel and cobbles interspersed with fine grained silt and clay and locally organic-rich sediments 3.0 m The maximum is 60 000 μL/L at the depth of 3 m Increase (Arora et al. 2016)
    4 5 km SE of Delhi, Ontario (Big Creek Drainage Basin) 5.8 m Medium sand 5.8 m 40 000 μL/L Increase (Reardon et al. 1979)
    5 Southern Amazon basin: Juruena, Mato Grosso, Brazil (10°25' S; 58°46' W, 230-250 m asl) 8 m Mosaic of Oxisols and Ultisols (acid soil) 8 m (0.1, 0.25, 0.5, 1, 2, 4, 6, 8 m) 9 000 μL/L Increase followed by decrease (Johnson et al. 2008)
    6 10 km south of Saskatoon, Canada 6 m Aeolian sand 6 m (0.30, 0.56, 1.06, 1.56, 2.08, 2.61, 3.13; 4.56; 5.12 m) 400-12 900 μL/L Decrease in summer; Increase in Winter (Hendry et al. 1999)
    7 Southeast Phoenix, AZ, in the southeastern region of the West Basin of the Salt River Valley 6-9 m Silty sands and moderately well graded gravels 6 m The maximum is 30 000 μL/L at the depth of 6 m Decrease followed by increase (Suchomel et al. 1990)
    8 Cape cod, Southeastern Massachusetts, USA 0.5-12 m Sands and gravels 3.5 m Maximum 50 000 μL/L Increase (Lee, 1997)
    9 Gigante Peninsula (9°06' N, 79°50' W) 2 m Clay 2 m (0.05, 0.2, 0.4, 0.75, 1.25 and 2 m) 40 000 μL/L Increase (Koehler et al. 2010)
    下载: 导出CSV
  • [1]

    Andrews JA, Schlesinger WH. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles, 15(1): 149-162. doi: 10.1029/2000gb001278

    [2]

    Arora B, Spycher NF, Steefel CI, et al. 2016. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry, 127(2-3): 367-396. doi: 10.1007/s10533-016-0186-8

    [3]

    Capaccioni B, Caramiello C, Tatàno F, et al. 2011. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Management, 31(5): 956-965. doi: 10.1016/j.wasman.2010.10.004

    [4]

    Chaopricha NT, Marín-Spiotta E. 2014. Soil burial contributes to deep soil organic carbon storage. Soil Biology and Biochemistry, 69: 251-264. doi: 10.1016/j.soilbio.2013.11.011

    [5]

    Chen D, Wei W, Daryanto S, Tarolli P. 2020. Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Science of the Total Environment, 721: 137751. doi: 10.1016/j.scitotenv.2020.137751

    [6]

    Chen Q, Shen C, Sun Y, et al. 2007. Characteristics of soil organic carbon and its isotopic compositions. Chinese Journal of Ecology, 26(9): 1327-1334. doi: 10.13292/j.1000-4890.2007.0255

    [7]

    Cleveland CC, Nemergut DR, Schmidt SK, et al. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82(3): 229-240. doi: 10.1007/s10533-006-9065-z

    [8]

    Deng Q, Hui D, Chu G, et al. 2017. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China. Scientific Reports, 7(1): 5539. doi: 10.1038/s41598-017-06345-2

    [9]

    Etiope G. 1999. Subsoil CO2 and CH4 and their advective transfer from faulted grassland to the atmosphere. Journal of Geophysical Research:Atmospheres, 104(D14): 16889-16894. doi: 10.1029/1999JD900299

    [10]

    Fierer N, Schimel JP. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67(3): 798-805. doi: 10.2136/sssaj2003.0798

    [11]

    Flechard CR, Neftel A, Jocher M, et al. 2007. Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agricultural and Forest Meteorology, 142(1): 66-84. doi: 10.1016/j.agrformet.2006.11.006

    [12]

    Fontaine S, Barot S, Barré P, et al. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167): 277-280. doi: 10.1038/nature06275

    [13]

    Gao Y, Tian J, Pang Y, et al. 2017. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Frontiers in Plant Science, 8: 1282. doi: 10.3389/fpls.2017.01282

    [14]

    Gerke H, Rieckh H, Sommer M. 2015. Interactions between crop, water, and dissolved organic and inorganic carbon in a hummocky landscape with erosion-affected pedogenesis. Soil and Tillage Research, 156: 230-244. doi: 10.1016/j.still.2015.09.003

    [15]

    Granieri D, Chiodini G, Marzocchi W, et al. 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): Influence of environmental and volcanic parameters. Earth and Planetary Science Letters, 212(1-2): 167-179. doi: 10.1016/S0012-821X(03)00232-2

    [16]

    Han G, Yang T, Man L, et al. 2020. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agriculture Ecosystems & Environment, 301: 107027. doi: 10.1016/j.agee.2020.107027

    [17]

    Hashimoto S, Komatsu H. 2006. Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. Journal of Forest Research, 11(1): 41-50. doi: 10.1007/s10310-005-0185-4

    [18]

    Hashimoto S, Tanaka N, Kume T, et al. 2007. Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest. Journal of Forest Research, 12(3): 209-221. doi: 10.1007/s10310-007-0009-9

    [19]

    Hendry MJ, Mendoza CA, Kirkland RA, et al. 1999. Quantification of transient CO2 production in a sandy unsaturated zone. Water Resour. Res, 35(7): 2189-2198. doi: 10.1029/1999WR900060

    [20]

    IPCC. 2018. Global Warming of 1.5℃: An IPCC Special Report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

    [21]

    IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte V, Zhai P, Pirani A, et al.

    [22]

    Jassal R, Black A, Novak M, et al. 2005. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130: 176-192. doi: 10.1016/j.agrformet.2005.03.005

    [23]

    Jassal RS, Black TA, Drewitt GB, et al. 2004. A model of the production and transport of CO2 in soil: Predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agricultural and Forest Meteorology, 124(3-4): 219-236. doi: 10.1016/j.agrformet.2004.01.013

    [24]

    Jobbágy E, Jackson R. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    [25]

    Johnson MS, Lehmann J, Riha SJ, et al. 2008. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophysical Research Letters, 35(L17401): 1-5. doi: 10.1029/2008GL034619

    [26]

    Keller CK, Bacon DH. 1998. Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2, and 14CO2. Global Biogeochemical Cycles, 12(2): 361-372. doi: 10.1029/98GB00742

    [27]

    Koehler B, Zehe E, Corre MD, et al. 2010. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils. Biogeosciences, 7: 2311-2325. doi: 10.5194/bg-7-2311-2010

    [28]

    Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1627. doi: 10.1126/science.1097396

    [29]

    Lee RW. 1997. Effects of carbon dioxide variations in the unsaturated zone on water chemistry in a glacial-outwash aquifer. Applied Geochemistry, 12(4): 347-366. doi: 10.1016/S0883-2927(97)00001-2

    [30]

    Lee X, Wu H, Sigler J, et al. 2004. Rapid and transient response of soil respiration to rain. Global Change Biology, 10: 1017-1026. doi: 10.1111/j.1365-2486.2004.00787.x

    [31]

    Liegler A. 2016. Diffuse CO2 degassing and the origin of volcanic gas variability from Rincón de la Vieja, Miravalles and Tenorio Volcanoes, Guanacaste Province, Costa Rica. M. S. thesis. Houghton, Michigan: Michigan Technological University: 1-69.

    [32]

    Liu J, Han G. 2020. Effects of chemical weathering and CO2 outgassing on δ13C DIC signals in a karst watershed. Journal of Hydrology, 589: 125192. doi: 10.1016/j.jhydrol.2020.125192

    [33]

    Liu J, Hua Z, Liu D. 1997. Preliminary study of greenhouse gases in loess in Weinan, Shaanxi Province. Chinese Science Bulletin, 42(11): 921-924. doi: 10.1007/BF02882548

    [34]

    Liu M, Han G, Li X. 2021. Comparative analysis of soil nutrients under different land-use types in the Mun River basin of Northeast Thailand. Journal of Soils and Sediments(21): 1136-1150. doi: 10.1007/s11368-020-02870-2

    [35]

    Liu M, Han G, Zhang Q. 2020. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agriculture, Ecosystems & Environment, 288: 106719.

    [36]

    Liu Q, Liu J, Sui S. 2001. Features of major greenhouse gases in loess, Shanxi Province, China. Chinese Science Bulletin, 46(17): 1469-1471. doi: 10.1007/BF03187034

    [37]

    Liu T. 1985. Loess and the Environment. Beijing: China Ocean Press. 1-481. (In Chinese)

    [38]

    Liu W, Yang H, Ning Y, et al. 2007. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau. Organic Geochemistry, 38(9): 1571-1579. doi: 10.1016/j.orggeochem.2007.05.004

    [39]

    Liu W, Yang H, Sun Y, et al. 2011. δ13C Values of loess total carbonate: A sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau. Chemical Geology, 3-4(284): 317-322. doi: 10.1016/j.chemgeo.2011.03.011

    [40]

    Liu X, Wan S, Su B, et al. 2002. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240(2): 213-223. doi: 10.1023/A:1015744126533

    [41]

    Liu Z. 2011. Is pedogenic carbonate an important atmospheric CO2 sink? Chinese Science Bulletin, 56(35): 3794-3796.

    [42]

    Lu H, Hongyan Z, Lin Z, et al. 2015. Temperature forced vegetation varations in glacial interglacial cycles in northeastern China revealed by loess palesol deposit. Quaternary Sciences, 35(4): 828-836. doi: 10.11928/j.issn.1001-7410.2015.04.05

    [43]

    Lyu A, Lu H, Lin Z, et al. 2018. Variation and possible forcing mechanism of organic carbon isotopic compositions of loess in Northeastern China over the past 1. 08 Ma. Journal of Asian Earth Sciences, 155: 174-179. doi: 10.1016/j.jseaes.2017.11.013

    [44]

    Maier M, Schack-Kirchner H, Hildebrand EE, et al. 2010. Pore-space CO2 dynamics in a deep, well-aerated soil. European Journal of Soil Science, 61(6): 877-887. doi: 10.1111/j.1365-2389.2010.01287.x

    [45]

    Maier M, Schack-Kirchner H, Hildebrand EE, et al. 2011. Soil CO2 efflux vs. soil respiration: Implications for flux models. Agricultural & Forest Meteorology, 151(12): 1723-1730. doi: 10.1016/j.agrformet.2011.07.006

    [46]

    Pabst H, Gerschlauer F, Kiese R, et al. 2016. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degradation & Development, 27(3): 592-602.

    [47]

    Pengthamkeerati P, Motavalli PP, Kremer RJ, et al. 2005. Soil carbon dioxide efflux from a claypan soil affected by surface compaction and applications of poultry litter. Agriculture, Ecosystems and Environment, 109(1): 75-86.

    [48]

    Popiţa G, Frunzeti N, Ionescu A, et al. 2015. Evaluation of carbon dioxide and methane emission from Cluj-Napoca municipal landfill, Romania. Environmental Engineering and Management Journal, 14(6): 1389-1398. doi: 10.30638/eemj.2015.151

    [49]

    Qin XG, Li CS, Cai BG. 2001. The sensitivity simulation of climate impact on C pools of loess. Quaternary Sciences, 21(2): 153-161.

    [50]

    Reardon EJ, Allison GB, Fritz P. 1979. Seasonal chemical and isotopic variations of soil CO2 at Trout Creek, Ontario. Journal of Hydrology, 43(1): 355-371. doi: 10.1016/0022-1694(79)90181-1

    [51]

    Song C, Han G, Ning Z, et al. 2017a. The characteristics and origin of CO2 in unsaturated zone at loess tableland of Northwestern China. Quaternary Research, 37(6): 1172-1181. doi: 10.11928/j.issn.1001-7410.2017.06.02

    [52]

    Song C, Han G, Shi Y, et al. 2017b. Characteristics of CO2 in unsaturated zone(~90 m) of loess tableland, Northwest China. Acta Geochimica, 36(3): 489-493. doi: 10.1007/s11631-017-0214-y

    [53]

    Song C. 2017. Characteristics and origin of soil CO2 at unsaturated zone in loess tableland and its implication to carbon cycle. Ph. D. thesis. Beijing: China University of Geosciences (Beijing): 1-132. (In Chinese)

    [54]

    Suchomel KH, Kreamer DK, Long A. 1990. Production and transport of carbon dioxide in a contaminated vadose zone: a stable and radioactive carbon isotope study. Environmental science & technology, 24(12): 1824-1831. doi: 10.1021/es00082a006

    [55]

    Tan W, Zhang R, Cao H, et al. 2014. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena, 121: 22-30. doi: 10.1016/j.catena.2014.04.014

    [56]

    Thorstenson DC, Weeks EP, Haas H, et al. 1998. Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: Data and basic concepts of chemical and physical processes in the mountain. Water resources research, 34(6): 1507-1529. doi: 10.1029/98WR00267

    [57]

    Walvoord MA, Striegl RG, Prudic DE, et al. 2005. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone. Water resources research, 41(2): W02006. doi: 10.1029/2004WR003599

    [58]

    Wang C, Li F, Shi H, et al. 2013. The significant role of inorganic matters in preservation and stability of soil organic carbon in the Baoji and Luochuan loess/paleosol profiles, Central China. Catena, 109: 186-194. doi: 10.1016/j.catena.2013.04.001

    [59]

    Wang JP, Wang XJ, Zhang J, et al. 2015. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of northwestern China. European Journal of Soil Science, 66(1): 95-103. doi: 10.1111/ejss.12188

    [60]

    Wood WW, Petraitis MJ. 1984. Origin and distribution of carbon dioxide in the unsaturated zone of the southern high plains of Texas. Water Resources Research, 20(9): 1193-1208. doi: 10.1029/WR020i009p01193

    [61]

    Xiang SR, Doyle A, Holden PA, et al. 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 40(9): 2281-2289. doi: 10.1016/j.soilbio.2008.05.004

    [62]

    Yang S, Ding Z, Li Y, et al. 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America, 112(43): 13183. doi: 10.1073/pnas.1504688112

    [63]

    Zamanian K, Pustovoytov K, Kuzyakov Y. 2016. Pedogenic carbonates: Forms and formation processes. Earth Science Reviews, 157: 1-17. doi: 10.1016/j.earscirev.2016.03.003

    [64]

    Zamanian K, Zarebanadkouki M, Kuzyakov Y. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, (24): 2810-2817. doi: 10.1111/gcb.14148

    [65]

    Zhou B, Shen C, Sun W, et al. 2014. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning. Geology, 42(12): 1067-1070. doi: 10.1130/G36110.1

    [66]

    Zhou B, Wali G, Peterse F, et al. 2016. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr. Science China, 59(6): 1206-1215. doi: 10.1007/s11430-016-5276-x

  • 加载中

(7)

(4)

计量
  • 文章访问数:  1974
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2021-03-20
录用日期:  2021-12-25
刊出日期:  2022-03-15

目录