Dynamic Features of Groundwater Level in Northern Qinling and Its Influence Factors
-
摘要: 地下水是秦岭北麓地区的主要供水水源,研究该区地下水位动态变化特征及其影响因素对地下水资源合理开发及生态环境保护具有重要意义。以秦岭北麓的户县平原区为例,根据地下水埋深、气象、水文资料,结合研究区水文地质条件,运用克里金插值方法、主成分投影-聚类耦合模型,研究1980~2019年地下水位时空演变过程,以影响地下水动态的主要因素划分地下水动态类型,分析地下水位动态变化特征。结果表明,1980~2019年地下水位总体呈波动下降趋势;冲积平原和洪积平原年际变幅较大,而冲洪积扇前缘相对较小;研究区地下水动态类型可划分为水文型、降雨入渗-开采型、径流型、降雨入渗-水文-开采型4类;研究区地下水位态变化的主要外在影响因素为降雨、河流径流、开采。Abstract: Groundwater is the main water supply source in the north of Qinling mountains. It is of great significance to study the dynamic variation of groundwater level and its influencing factors for rational development of groundwater resources and protect the ecological environment. This paper chooses the Huxian plain as the regions in the north of Qinling mountains, According to the groundwater depth, meteorological and hydrological data, combined with the hydrogeological conditions in the study area, using the Kriging method and principal component projection-clustering coupling model statistical, the temporal and spatial variation process of groundwater level from 1980 to 2019 was studied, the groundwater dynamic types were classified according to the main factors affecting groundwater dynamics, and the dynamic variation characteristics of groundwater level were analyzed. The results show that the groundwater level fluctuates and declines from 1980 to 2019. The interannual variation of alluvial plain and diluvial plain is large while the leading edge of alluvial fan is relatively small. The groundwater dynamic types in the study area can be divided into four types:hydrologic, precipitation-exploration, runoff, and precipitation-hydrologic-exploration type. Rainfall, river runoff and exploitation are the main external influencing factors of groundwater level change in the study area.
-
-
梁秀娟,迟宝明,王文科,等. 专门水文地质学[M]. 北京:科学出版社,2016.
LIANG Xiujuan, CHI Baoming, WANG Wenke,et al. Applied Hydrogeology[M]. Beijing:Science Press, 2016.
金速,张静,王咏林.辽宁省地下水动态成因类型分析[J].城市地质,2016,11(02):64-68.
JIN Su, ZHANG Jing, WANG Yonglin. The Genetic Type of Groundwater Dynamic Change in Liaoning Province[J]. Urban Geology, 2016, 11(02):64-68.
黄浩,黄雷,鲁朝林,等.江汉平原地下水位动态变化特征分析[J].人民长江,2017,48(18):33-38.
HUANG Hao, HUANG Lei, LU Zhaolin, et al.Analysis on dynamic characteristics of groundwater level in Jianghan plain[J]. Yangtze River, 2017, 48(18):33-38.
蒋文武. 成都平原地下水动态特征及预测研究[D].成都:成都理工大学,2018.
JIANG Wenwu.Study on the Dynamic Characteristics and Prediction of Groundwater in Chengdu Plain[D]. Chengdu:Chengdu University of Technology,2018.
倪长健,王顺久,崔鹏.投影寻踪动态聚类模型及其在地下水分类中的应用[J].工程科学与技术,2006,(06):29-33.
NI Changjian, WANG Shunjiu, CUI Peng. Projection Pursuit Dynamic Cluster Model and Its Application in Groundwater Classification[J]. Advanced Engineering Sciences, 2006,(06):29-33.
王晓勇,朱立峰,董佳秋,等.干旱-半干旱区下垫面变化对地下水位的影响[J].西北地质,2019,52(02):227-235.
WANG Xiaoyong, ZHU Lifeng, DONG Jiaqiu, et al. Influence of Underlying Surface Change on Hydrogeological Conditions in Arid and Semi-arid Regions[J]. Northwestern Geology, 2019, 52(02):227-235.
胡海华,丁宏伟,贺兵英.石羊河流域中下游近40a地下水位动态特征分析[J].西北地质,2016,49(03):164-174.
HU Haihua, DING Hongwei, HE Bingying. Dynamic Variation of Groundwater Level in the Middle-Lower Reaches of Shiyanghe River Basin for Nearly 40 Years[J]. Northwestern Geology, 2016, 49(03):164-174.
李环环. 干旱区绿洲地下水位动态时序分析与预测[D].西安:长安大学,2018.
LI Huanhuan.Analysis on Dynamic State and Prediction of Groundwater in Arid Oasis -Take Yaoba Oasis of Inner Mongolia for Instance[D]. Xi'an:Changan University, 2018.
郑晓艳. 关中盆地地下水对气候变化的响应研究[D]. 西安:长安大学,2012.
ZHENG Xiaoyan. Mechanism of groundwater response to climate change in Guanzhong basin[D].Xi'an:Changan University, 2012.
马致远,李婷,胡伟伟,等.秦岭北麓水资源可持续开发利用分析[J].西北地质,2011,44(02):165-169.
MA Zhiyuan, LI Ting, HU Weiwei, et al. Analysis of Sustainable Exploitation and Utilization of Water Resources in Northern Qinling[J]. Northwestern Geology, 2011, 44(02):165-169.
王奇,唐世南,潘扎荣.秦岭北麓地下水资源开发利用分析[J].水利规划与设计,2018,(11):40-43.
WANG Qi, TANG Shinan, PAN Zharong. Analysis of exploitation and utilization of groundwater resources in the northern foot of Qinling Mountains[J]. Water Resources Planning and Design, 2018,(11):40-43.
董英,张茂省,刘洁,等.西安市地下水与地面沉降地裂缝耦合关系及风险防控技术[J].西北地质,2019,52(02):95-102.
DONG Ying, ZHANG Maosheng, LIU Jie, et al. Coupling Relationship between Groundwater and Ground Fissures of Land Subsidence in Xi'an City and Risk Prevention and Control Technology[J]. Northwestern Geology, 2019, 52(02):95-102.
徐存东,朱兴林,张锐,等.地下水埋深空间插值方法比较和空间变异性研究[J].节水灌溉,2019,(01):49-56.
XU Cundong, ZHU Xinglin, ZHANG Rui, et al. Spatial Interpolation Methods Comparison and Spatial Variability of Groundwater Depth[J]. Water Saving Irrigation 2019,(01):49-56.
李云排,李娜,周维博.西安市主城区地下水位动态类型划分研究[J].水资源与水工程学报,2015,26(05):121-124.
LI Yunpai, LI Na, ZHOU Weibo. Study on division of groundwater dynamic type in main urban of xi'an[J]. Journal of Water Resources and Water Engineering, 2015,26(05):121-124.
孙娟.基于多因子PCP-C耦合模型的流域历时洪水分类方法研究[J].水利技术监督,2019,(02):89-91.
SUN Juan. Research on diachronic flood classification method based on multi-factor PCP-C coupling model[J]. Technical Supervision in Water Resources,2019,(02):89-91.
刘玉邦,梁川.基于非线性变换的PCP-C模型及其在地下水动态分类中的应用[J].数学的实践与认识,2010,40(10):91-96.
LIU Yubang, LIANG Chuan. The Principal Component Projection-clustering Model Based on Nonlinear Transformation and Its Application in Groundwater Classification[J]. Mathematics in Practice and Theory, 2010, 40(10):91-96.
MAIRA, HAGEDORN B, TILLERY S, et al. Temporal and spatial variability of groundwater recharge on Jeju Island, Korea[J]. Journal of Hydrology, 2013, 501(501):213-226.
LALLAHEM, HANI, NAJJAR. On the use of neural networks to evaluate groundwater levels in fractured media[J]. Journal of Hydrology, 2005, 307(1):92-111.
WUT, LI Y. Spatial interpolation of temperature in the United States using residual kriging[J]. Applied Geography, 2013, 44:112-120.
FOWLER, J.E. Compressive-Projection Principal Component Analysis[J]. IEEE Transactions on Image Processing, 2009, 18(10):2230-2242.
-
计量
- 文章访问数: 1305
- PDF下载数: 503
- 施引文献: 0