Characteristics of fluid inclusions in quartz fractures in Ledong area of Yinggehai Basin and its constraints on gas accumulation
-
摘要: 莺歌海盆地乐东地区是我国典型高温超压天然气勘探领域,其关键储层黄流组砂岩以天然气富含CO2为特征,对其中石英颗粒内裂隙包裹体的研究能为CO2来源和天然气成藏信息提供重要线索。本文通过对黄流组砂岩石英颗粒内包裹体进行岩相学、显微测温与激光拉曼分析,结果表明黄流组砂岩石英颗粒内正常捕获流体包裹体均一温度主要分布在155~165益与170~180益两个温度区间,流体包裹体成分为CO2(气)和H2O(液)两种或CO2(气)和CO2(液)、H2O(液)三种。这些特征表明乐东地区黄流组至少经历两期富含CO2的热液活动,记录了埋藏晚期无机CO2在火山活动或深大断裂发育期充注成藏的信息。Abstract: Ledong area in Yinggehai basin is a typical field of high temperature and overpressure gas exploration in China. A large number of fluid inclusions are trapped in the quartz grains of sandstones in Huangliu Formation. Studying its characteristics and composition can analyze the information of gas accumulation in this area. According to the petrography, micro temperature measurement and laser Raman analysis of fluid inclusions, there are two types of fluid inclusions in the Huangliu formation quartz grain fracture: homogeneous and heterogeneous capture. The normally trapped fluid inclusions are mainly distributed between 155-165℃ and 170-180℃, and the compositions of fluid inclusions are CO2 (gas) and H2O (liquid) or CO2 (gas) and CO2 (liquid) and H2O (liquid). The characteristics of fluid inclusions indicate that the Huangliu formation in Ledong area experienced at least two periods of CO2 rich hydrothermal activity, recording the information of inorganic CO2 filling and reservoir formation in the late burial stage during volcanic activity or deep fault development.
-
Key words:
- fluid inclusion /
- quartz crack /
- gas Accumulation /
- Yinggehai basin
-
[1] 段威,罗程飞,刘建章,等. 莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义[J]. 地球科学-中国地质大学学报,2015,40(9):1517-1528.
[2] 刘平,李绪深,唐圣明,李文龙,童传新. 琼东南盆地南部隆起带天然气水合物赋存特征分析[J]. 沉积与特提斯地质,2017, 37(1):73-78.
[3] 谢玉洪,刘平,黄志龙,等. 莺歌海盆地高温超压天然气成藏地质条件及成藏过程[J]. 天然气工业,2012,32(4):19-23.
[4] 徐新德. 南海北部莺-琼盆地CO2成因与成藏特征及其分布规律[J]. 海洋地质前沿,2017,33(7):1-2.
[5] 杜学斌,姜涛,王振峰,等. 莺歌海盆地CO2气富集与热流体活动的关系[J]. 海洋地质与第四纪地质, 2005,25(2):109-114.
[6] 何家雄,夏斌,刘宝明,等. 莺歌海盆地泥底辟热流体上侵活动与天然气及CO2运聚规律剖析[J]. 石油实验地质,2004,26(4):349-358.
[7] 何家雄,徐瑞松,刘全稳,等. 莺歌海盆地泥底辟发育演化与天然气及CO2运聚成藏规律[J]. 海洋地质与第四纪地质,2008, 28(1):91-98.
[8] 何家雄,夏斌,阎贫,等. 莺-琼盆地多源非生物CO2运聚成藏特征[J]. 天然气工业,2007, 27(4):10-14.
[9] 高煜婷. 莺歌海盆地成岩作用研究与孔隙演化[D]. 黑龙江:东北石油大学,2011.
[10] 张伟. 南海北部主要盆地泥底辟/泥火山发育演化与油气及天然气水合物成矿成藏[D]. 广州:中国科学院研究生院(广州地球化学研究所),2016.
[11] 尤丽. 复杂沉积成岩场有利储层评价预测技术及其在南海西部海域的应用[J]. 中国海上油气,2018,30(2):45-53.
[12] 张瑾爱. 利用重磁资料研究莺-琼盆地构造分界及其两侧断裂特征[D]. 长安:长安大学. 2013.
[13] 刘震,朱文奇,孙强,等. 中国含油气盆地地温-低压系统[J]. 石油学报,2012,33(1):1-17.
[14] 吕孝威. 莺歌海盆地东方区黄流组成岩作用与储层主控因素研究[D]. 成都:成都理工大学,2014.
[15] 钟泽红,刘景环,张道军,等. 莺歌海盆地东方区大型海底扇成因及沉积储层特征[J]. 石油学报,2013,34(S2):102-111.
[16] 苏奥,陈红汉,贺聪,等. 控制储层中异常高孔带发育的成岩作用-以琼东南盆地西部崖城区为例[J]. 中国矿业大学学报,2017,46(2):345-355.
[17] 郇金来,漆智,杨朝强,等. 莺歌海盆地东方区黄流组一段储层成岩作用机理及孔隙演化[J]. 地质科技情报,2016,35(1):87-94.
[18] Bodnar R J. Introduction to fluidinclusions. In:Samson I Anderson and Marshalld (eds). Fluid inclusions analysis and interpretation. Mineralogical association of Canada,Short Course Series,2003,32:1-8.
[19] Goldstein R H and Reynolds T J. Systematics of fluid inclusions in diagenetica minerals. SEPMS short Course,1994,31:199.
[20] Chi G X and Lu H Z. Validation and representation of fluid inclusion microthermoment ricdataus in the fluid inclusion as semblage(FIA) concept. Actapetrologica Sinica, 2008,24(9):1945-1953.
[21] 黄保家. 莺琼盆地天然气成因类型及成藏动力学研究[D]. 广州:中国科学院广州地球化学研究所,2002.
[22] 宋瑞有,丁俊峰,韩光明,等. 莺歌海盆泥底辟类型及侵入方式[J]. 世界地质,2017,36(4):1235-1223.
计量
- 文章访问数: 590
- PDF下载数: 108
- 施引文献: 0