Cuonadong Be-rare polymetallic metal deposit: constraints from Ar-Ar Age of hydrothermal Muscovite
-
摘要: 特提斯喜马拉雅是继华南和新疆阿尔泰之后又一条新发现的大型稀有金属成矿带,其成矿时代受到广泛的关注。本文以代表性矿床错那洞铍稀有多金属矿床为研究对象,挑选出矽卡岩型矿化体中的热液白云母,利用Ar-Ar同位素定年的方式测定热液活动时间,以此限制成矿时代。结果显示错那洞穹窿矽卡岩型矿体中白云母Ar-Ar同位素坪年龄为14.21±0.22Ma,对应的40Ar/36Ar-39Ar/36Ar的等时线年龄为14.21±0.27Ma,与错那洞穹窿中具有高分异特征的白云母花岗岩浆侵位时间(~14Ma)一致,表明错那洞矽卡岩型铍稀有多金属矿床的成矿年龄为~14Ma,而与穹窿内高分异白云母花岗岩一致的年龄暗示了该高分异花岗岩为该期矽卡岩型稀有金属矿化的成矿母岩浆。Abstract: The Tethys Himalaya is a newly-recognized rare metal metallogenic belt(RMMB). It mainly produces rare metal such as beryllium, tungsten, tin, niobium and tantalum. Cuonadong Be-rare polymetallic metal deposit is located in the Cuonadong Gneiss Dome(CGD) with three types of mineralized bodies, consisting of pegmatitic type, skarn type and hydrothermal vein type. Among them, the skarn type is mainly occurred in the deformed zone around the mantle area of the CGD. Field and microscopic features show that Ar-Ar age of muscovite can represent the hydrothermal activity time of skarn. The Ar-Ar isotope of muscovite from the skarnized marble in the Cuonadong dome was dated, yielded a Ar-Ar plateau age of 14.21±0.22Ma, corresponding to a 40Ar/36Ar-39Ar/36Ar isochron age of 14.21±0.27Ma. This age consistented with emplacement activity time (~14Ma) of the highly fractional muscovite granite within the CGD, and it was confirmed that the skarn-type rare metal mineralization in this period indeed result from the muscovite granite from chronological perspect.
-
Key words:
- Cuonadong /
- ore-forming age /
- Ar-Ar dating /
- Tethys Himalaya Be-rare polymetallic deposit
-
[1] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36.
[2] 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 2017, 47(7):745-765.
[3] 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学:地球科学, 2017, 47(08):871-880.
[4] 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(04):1003-1008.
[5] Xie L, Tao X Y, Wang R C, et al. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 2019:105286.
[6] 张志, 张林奎, 李光明, 等. 北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题[J]. 地球学报, 2017, 38(5):754-76.
[7] 梁维, 张林奎, 夏祥标, 等. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J]. 地球科学, 2018, 43(08):220-232.
[8] Yin A and Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280.
[9] 聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 79(3):373-385.
[10] 杨竹森, 侯增谦, 高伟, 等. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 2006, 80(9):1377-1391.
[11] 缪华清, 李光明, 张志, 等. 藏南柯月铅锌矿床成矿物质来源:来自硫、铅同位素的证据[J]. 沉积与特提斯地质, 2017, 37(2):14-22.
[12] 吴建阳, 李永灿, 刘洪, 等. 藏南马扎拉金锑矿床电性结构特征与地质解译[J]. 沉积与特提斯地质, 2016, 36(3):25-29.
[13] Liu G and Einsele G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J]. Geologische Rundschau, 1994, 82:32-61.
[14] Garzanti E. Stratigraph and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences, 1999, 17:805-827.
[15] Pan Y and Kidd W S F. Nyainqentanglha Shear Zone:A Late Miocene Extensional Detachment in the Southern Tibetan Plateau[J]. Geology, 1992, 20(9):775-778.
[16] Lee J, Hacker B, Wang Y. Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet[J]. Journal of Structural Geology, 2004, 26(12):2297-2316.
[17] Burg J, Guiraud M, Chen G, Li G C. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China)[J]. Earth and Planetary Science Letters,1984,69(2):391~400.
[18] 张进江, 郭磊, 张波. 北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征[J]. 地质科学, 2007, 42(1):16~30.
[19] Fu J G, Li G M, Wang G H, et al. First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome[J]. International Journal of Earth Sciences, 2016.:1-16.
[20] 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹窿构造的建立-藏南错那洞穹窿的厘定及区域构造内涵[J]. 中国地质, 2018a, (4):783-802.
[21] 付建刚, 李光明, 王根厚, 等. 北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹窿Ar-Ar年代学证据[J]. 地球科学, 2018b, 43(8):116-128.
[22] 黄春梅, 李光明, 张志, 等. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(06):188-201.
[23] Huang C M, Zhao Z D, Li G M, et al. Leucogranites in Lhozag, southern Tibet:Implications for the tectonic evolution of the eastern Himalaya[J]. Lithos, 2017, 294:246-262.
[24] Liu Z C, Wu F Y, Ding L, et al. Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J]. Lithos, 2016, (240-243):337-354.
[25] Liu Z C, Wu F Y, Ji W Q, et al. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 2014, (208-209):118-136.
[26] 张林奎, 张志, 李光明, 等. 特提斯喜马拉雅错那洞穹窿的岩石组合、构造特征与成因[J]. 地球科学, 2018, 43(8):142-161.
[27] 林彬, 唐菊兴, 郑文宝, 等. 西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J]. 岩石矿物学杂志, 2016, 35(3):391-406.
[28] 高利娥, 高家昊, 赵令浩, 等. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用[J]. 岩石学报, 2017, 33(08):2395-2406.
[29] Cao H W, Li G M, Zhang Z, et al. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet:a case study of the Cuonadong deposit[J]. Ore Geology Reviews, 2020:103403.
[30] Xie L, Tao X, Wang R C, et al. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization[J] Lithos, 2019. https://doi. org/10. 1016/j. lithos. 2019. 105286.
[31] Fu J J, Li G M, Wang G H, et al. Synchronous granite intrusion and E-W extension in the Cuonadong dome, southern Tibet, China:evidence from field observations and thermochronologic results[J]. International Journal of Earth Sciences, 2018,(1-2):1-19.
[32] Schultz M H, Hodges K V, Ehlers T A, et al. Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet[J]. Earth and Planetary Science Letters, 2017, 459:105-117.
计量
- 文章访问数: 699
- PDF下载数: 114
- 施引文献: 0