柴西开特米里克地区干柴沟组米氏旋回及湖平面变化特征

徐为鹏, 伊海生, 唐闻强, 陈云, 陈晓冬, 邢浩婷, 宋伟, 崔荣龙, 乔富海. 2023. 柴西开特米里克地区干柴沟组米氏旋回及湖平面变化特征. 沉积与特提斯地质, 43(4): 712-721. doi: 10.19826/j.cnki.1009-3850.2021.04005
引用本文: 徐为鹏, 伊海生, 唐闻强, 陈云, 陈晓冬, 邢浩婷, 宋伟, 崔荣龙, 乔富海. 2023. 柴西开特米里克地区干柴沟组米氏旋回及湖平面变化特征. 沉积与特提斯地质, 43(4): 712-721. doi: 10.19826/j.cnki.1009-3850.2021.04005
XU Weipeng, YI Haisheng, TANG Wenqiang, CHEN Yun, CHEN Xiaodong, XING Haoting, SONG Wei, CUI Ronglong, QIAO Fuhai. 2023. Characteristics of the Milankovitch cycles and lake-level changes in the Ganchaigou Formation of the Kaitemirike area, western Qaidam.. Sedimentary Geology and Tethyan Geology, 43(4): 712-721. doi: 10.19826/j.cnki.1009-3850.2021.04005
Citation: XU Weipeng, YI Haisheng, TANG Wenqiang, CHEN Yun, CHEN Xiaodong, XING Haoting, SONG Wei, CUI Ronglong, QIAO Fuhai. 2023. Characteristics of the Milankovitch cycles and lake-level changes in the Ganchaigou Formation of the Kaitemirike area, western Qaidam.. Sedimentary Geology and Tethyan Geology, 43(4): 712-721. doi: 10.19826/j.cnki.1009-3850.2021.04005

柴西开特米里克地区干柴沟组米氏旋回及湖平面变化特征

  • 基金项目: 国家自然科学基金项目(41972115);中国石油科技部重大专项(2019B-0309)
详细信息
    作者简介: 徐为鹏(1996—),男,硕士研究生,研究方向为沉积地质。E-mail:857886628@qq.com
    通讯作者: 伊海生(1959—),男,教授,博士生导师,研究方向为沉积学。E-mail:yhs@cdut.edu.cn
  • 中图分类号: P539.2

Characteristics of the Milankovitch cycles and lake-level changes in the Ganchaigou Formation of the Kaitemirike area, western Qaidam.

More Information
  • 目前,柴达木盆地米兰科维奇旋回研究普遍基于山前浅水沉积相地层进行讨论,而深水相地层中是否有记录米兰科维奇旋回特征有待探讨。本次研究通过对开2井上干柴沟组(N1)和下干柴沟组上段(E32)自然伽马测井曲线进行频谱分析和滤波分析,探讨了盆地西部开特米里克地区深湖相地层的米兰科维奇沉积旋回特征。结果显示,该地区上干柴沟组(N1)和下干柴沟组(E32)地层旋回周期与米兰科维奇地球轨道周期参数具有良好的对应性,说明天文轨道周期旋回对该地区地层沉积具有显著影响。在此基础上,结合Fischer图解及地层岩性特征,确定了干柴沟组上、下界线附近(约38.1~32.8 Ma)湖平面经历了一次相对长周期的升降变化。下干柴沟组上段处于湖平面上升阶段,主要受米氏旋回中的偏心率周期控制,气候相对温暖湿润,对应湖平面高位期。上干柴沟组处于湖平面下降阶段,主要受米氏旋回中的轴斜率周期控制,气候相对寒冷干旱,对应湖平面低位期。

  • 加载中
  • 图 1  柴西开特米里克地区地理位置图(a)及年代地层表(b)

    Figure 1. 

    图 2  柴西开特米里克地区开2井干柴沟组综合柱状图

    Figure 2. 

    图 3  柴西开特米里克地区上干柴沟组(a)、下干柴沟组上段(b)自然伽马频谱分析

    Figure 3. 

    图 4  柴西开特米里克地区上干柴沟组、下干柴沟组上段Fischer图解(长周期)

    Figure 4. 

    图 5  柴西开特米里克地区上干柴沟组(a)、下干柴沟组上段(b)高分辨率天文年代标尺

    Figure 5. 

    图 6  柴西开特米里克地区上干柴沟组及下干柴沟组上段湖平面变化趋势(c)、偏心率滤波曲线(b)与新生代全球温度变化(a)对比图

    Figure 6. 

    图 7  柴西开特米里克地区上干柴沟组(a)和下干柴沟组上段(b)功率谱图

    Figure 7. 

    表 1  柴西开特米里克地区上干柴沟组和下干柴沟组上段自然伽马曲线频谱分析结果及比例关系

    Table 1.  Spectrum analysis results and proportional relationship of the natural gamma curve of the upper Ganchaigou Formation and the upper part of lower Ganchaigou Formation in the Kaitemirike area

    地层频率/m−1厚度/m厚度比值理论比值误差率/%轨道周期/ka
    上干柴沟组0.110110偏心率100
    0.18145.510.5510.542.04轴斜率长周期54
    0.24074.150.4150.411.31轴斜率短周期41
    0.42962.330.2330.231.20岁差长周期23
    0.52961.880.1890.19−0.63岁差短周期19
    下干柴沟组上段0.096710.35110偏心率100
    0.17845.60.560.540.31轴斜率长周期54
    0.22684.410.440.413.96轴斜率短周期41
    0.42012.380.240.230.04岁差长周期23
    0.50561.980.20.190.62岁差短周期19
    下载: 导出CSV
  • [1]

    Abels H A, Aziz H A, Krijgsman W , et al. , 2010. Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle Miocene, Spain)[J]. Earth & Planetary Science Letters, 289(1-2): 220-231.

    [2]

    Berger A, Loutre M F, Dehant V, 1989. Pre-Quaternary Milankovitch frequencies[J]. Nature, 342(6246): 133-133.

    [3]

    Fischer A G, 1964. The lofter cyclothems of the Alpine Triassic[J]. Kansas Geological Survey Bulletin, 169(1): 107-149.

    [4]

    Hinnov L A, Ogg J G, 2007. Cyclostratigraphy and the Astronomical Time Scale[J]. Stratigraphy, 4(2): 239-25.

    [5]

    Hajek E A. and Straub K M, 2017. Autogenic Sedimentation in Clastic Stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 45: 681-709. doi: 10.1146/annurev-earth-063016-015935

    [6]

    Iii W, Read J F, 1990. Field and Modelling studies of Cambrian carbonate cycles, Virginia Appalachians; discussion and reply[J]. Journal of Sedimentary Research, 60(5): 654-687.

    [7]

    Idnurm M, Cook P J, 1980. Palaeomagnetism of beach ridges in South Australia and the Milankovitch theory of ice ages[J]. Nature, 286(5774): 699-702. doi: 10.1038/286699a0

    [8]

    Li M S, Huang C J, Hinnov L, et al. , 2018. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China[J]. Earth and Planetary Science Letters, 482: 591-606. doi: 10.1016/j.jpgl.2017.11.042

    [9]

    Milankovitch M, 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem [M]. Akademie: Royale Serbe, 133: 1-633.

    [10]

    Montaez I P, Read J F, 1992. Eustatic control on early dolomitization of cyclic peritidal carbonates: Evidence from the Early Ordovician Upper Knox Group, Appalachians[J]. Geological Society of America Bulletin, 104(7): 872-886. doi: 10.1130/0016-7606(1992)104<0872:ECOEDO>2.3.CO;2

    [11]

    Osleger J, 1991. Relation of Eustasy to Stacking Patterns of Meter-Scale Carbonate Cycles, Late Cambrian, U. S. A[J]. Journal of Sedimentary Research, Vol. 61(7): 1745-8.

    [12]

    Osleger, David, 1991. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls[J]. Geology, 19(9): 917-920. doi: 10.1130/0091-7613(1991)019<0917:SCCIFA>2.3.CO;2

    [13]

    Paul E O, Dennis V K, 1999. Long-Period Milankovitch Cycles from the Late Triassic and Early Jurassic of Eastern North America and Their Implications for the Calibration of the Early Mesozoic Time-Scale and the Long-Term Behaviour of the Planets[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357(1757) : 1761-1786. doi: 10.1098/rsta.1999.0400

    [14]

    Scholle P A , James N P , Read J F, 1989. Carbonate Sedimentology and Petrology[J]. Short Courses in Geology.

    [15]

    Sadler P M, Strauss D J, 1990. Estimation of the completeness of stratigraphical sections using empirical data and theoretical models[J]. Journal of Geological Society of London, 147(3): 471-485. doi: 10.1144/gsjgs.147.3.0471

    [16]

    Sun Z M, Yang Z, Pei J, et al. , 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth & Planetary Science Letters, 237(3-4): 635-646.

    [17]

    Weedon G P. 2003. Time-Series and Cyclostratigraphy[M]. Cambridge: Cambridge University Press, 1-259

    [18]

    Wei X, Yan D, Luo P, et al. , 2020. Astronomically forced climate cooling across the Eocene–Oligocene transition in the Pearl River Mouth Basin, northern South China Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 558: 109945. doi: 10.1016/j.palaeo.2020.109945

    [19]

    Zhang T, Zhang C, Fan T, et al. , 2019. Cyclostratigraphy of Lower Triassic terrestrial successions in the Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 539: 109493.

    [20]

    Zachos, James C, 2001. Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary[J]. Science, 292(5515): 274-274. doi: 10.1126/science.1058288

    [21]

    Zachos J C, 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present [J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    [22]

    陈茂山, 1999. 测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J]. 石油地球物理勘探, 34(1): 57 − 64

    Chen M S, 1999. Two novel depth-domain frequency spectrum analysis methods for logging data and their application to sequence stratigraphy research[J]. Oil Geophysical Prpspecting, 34(1): 57 − 64.

    [23]

    付国民, 李永军, 邓颖, 2001. 柴达木盆地干柴沟地区第三系湖盆边缘斜坡带沉积体系及湖盆充填模式分析[J]. 沉积与特提斯地质, 21(2): 39-47 doi: 10.3969/j.issn.1009-3850.2001.02.005

    Fu G M, Li Y J, Deng Y, 2001. Depositional systems and filling patterns of the Tertiary Qaidam lake basin in the Ganchaigou region, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 21(2): 39-47. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2001.02.005

    [24]

    龚大兴, 伊海生, 吴驰华, 等, 2011. 南盘江盆地二叠系高频沉积旋回的测井响应及海平面变化趋势[J]. 地球物理学进展, 26(1): 287-293 doi: 10.3969/j.issn.1004-2903.2011.01.033

    Gong D X, Yi H S, Wu C H, et al. , 2011. High-frequency carbonate depositional cycles and its response to the gamma ray well logging data and sea-level change in Permian Nanpanjiang Basin[J]. Progress in Geophysics, 26(1): 287-293. doi: 10.3969/j.issn.1004-2903.2011.01.033

    [25]

    黄春菊, 2014. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 21(2): 48-66 doi: 10.13745/j.esf.2014.02.005

    Huang C J, 2014. The current status of cyclostratigraphy and astrochronology in the Mesozoic [J]. Earth Science Frontiers, 21(2): 48-66. doi: 10.13745/j.esf.2014.02.005

    [26]

    李堃宇, 伊海生, 夏国清, 2018. 基于测井曲线频谱分析柴达木盆地西部七个泉地区上、下油砂山组米兰科维奇旋回特征[J]. 地质科技情报, 37(3): 87-91 doi: 10.19509/j.cnki.dzkq.2018.0312

    Li K Y, Yin H S, Xia G Q, 2018. Characteristics of Milankovitch cycles of Shangyoushashan and Xiayoushashan formations in Qigequan area, western Qaidam Basin based on the spectral analysis of the logging curve[J]. Geological Science and Technology Information, 37(3): 87-91. doi: 10.19509/j.cnki.dzkq.2018.0312

    [27]

    李斌, 孟自芳, 李相博, 等, 2005. 靖安油田延长组米兰柯维奇沉积旋回分析[J]. 地质科技情报, 24(2): 64 − 70

    Li B, Meng Z F, Li X B, et al., 2005. Analysis of Milankovitch cycles of Yanchang Formation in Jing'an Oilfield[J]. Geological Science and Technology Information, 24(2): 64 − 70.

    [28]

    李凤杰, 王多云, 程微, 2004. 应用自然伽马曲线反演陇东地区延安组沉积旋回[J]. 成都理工大学学报(自科版), 31(5): 473 − 477

    Li F J, Wang D Y, Cheng W. 2004. Use of natural gamma-ray well log to study sedimentary cycles of Yan'an Formation in Eastern Gansu, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(5): 473 − 477.

    [29]

    李军, 胡光明, 李强, 等, 2019. 柴达木盆地扎X井区上新统下油砂山组Ⅳ油层组成岩作用研究[J]. 沉积与特提斯地质, 39(3): 65 − 72

    Li J, Hu G M, Li Q, et al., 2019. Diagenesis of the IV oil reservoirs of the Pliocene Xiayoushashan Formation in the Zha-X well area, Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 39(3): 65 − 72.

    [30]

    荣建锋, 2009. 柴达木盆地西部干柴沟地区上、下油砂山组高频沉积旋回及成因机制研究[D]. 成都理工大学.

    Rong J F, 2009. High-frequency sedimentary cycles and genetic mechanism of the upper and lower Youshashan Formation in the Ganchaigou area of the western Qaidam Basin[D]. Chengdu University of Technology.

    [31]

    唐闻强, 伊海生, 伊帆, 等, 2020. 基于测井曲线频谱分析柴西南扎哈泉地区下干柴沟组米兰科维奇旋回特征[A]. 中国石油学会石油物探专业委员会(SPG)、国际勘探地球物理学家学会(SEG). SPG/SEG南京2020年国际地球物理会议论文集(中文)[C]. 中国石油学会石油物探专业委员会(SPG)、国际勘探地球物理学家学会(SEG): 石油地球物理勘探编辑部: 4

    Tang W Q, Yi H S, Yi F, et al., 2020. Characteristics of Milankovitch Cycles of Xia Ganchaigou Formations in Zhahaquan Area, Southwest Qaidam Basin, Based on the Spectral Analysis of the Logging Curve[A]. China Petroleum Society Petroleum Geophysical Professional Committee (SPG), International Society of Exploration Geophysicists (SEG). SPG / SEG Nanjing 2020 International Geophysical Conference Proceedings (Chinese) [C]. Petroleum Geophysical Prospecting Committee of China Petroleum Society (SPG), International Society of Exploration Geophysicists (SEG): Editorial Department of Petroleum Geophysical Exploration: 4.

    [32]

    汤良杰, 金之钧, 张明利, 等, 2000. 柴达木盆地构造古地理分析[J]. 地学前缘, 7(4): 421-429 doi: 10.3321/j.issn:1005-2321.2000.04.009

    Tang L J, Jin Z J, Zhang M L, et al. , 2000. Structural paleogeographical analysis of Qaidam Basin[J]. Geoscience Frontier, 7(4): 421-429. doi: 10.3321/j.issn:1005-2321.2000.04.009

    [33]

    王永军, 郭泽清, 刘卫红, 等, 2007. 柴达木盆地东部三湖地区四系米兰柯维奇旋回分析[J]. 地球物理学进展, 22(2): 544-551 doi: 10.3969/j.issn.1004-2903.2007.02.029

    Wang Y J, Guo Z Q, Liu W H, et al. , 2007. Analysis of milankovitch cycles of quaternary in sanhu area, eastern qaidam basin[J]. Progress in Geophysics, 22(2): 544-551. doi: 10.3969/j.issn.1004-2903.2007.02.029

    [34]

    王艳清, 2014. 柴达木盆地西部地区古近-新近系沉积体系与油气分布[M]. 石油工业出版社.

    Wang Y Q, 2014. Paleogene-Neogene sedimentary system and oil and gas distribution in western Qaidam Basin[M]. Petroleum Industry Press.

    [35]

    夏国清, 伊海生, 黄华谷, 等, 2010. 藏北雁石坪地区夏里组米级沉积旋回及成因[J]. 成都理工大学学报(自然科学版), 37(2): 133 − 139

    Xia G Q, Yi H S, Huang H G, et al., 2010. Meter-scale sedimentary cycles and their possible genetic mechanism of Middle Jurassic Xiali Formation in Yanshiping area, North Tibet[J].China. Journal of Chengdu University of Technology (Science & Technology Edition), 37(2): 133 − 139.

    [36]

    尹青, 伊海生, 夏国清, 等, 2015. 基于测井曲线频谱分析在伦坡拉盆地古近系米氏旋回层序及可容空间变化趋势中的研究[J]. 地球物理学进展, 30(3): 1288-1297 doi: 10.6038/pg20150339

    Yin Q, Yi H S, Xia G Q, et al. , 2015. Accommodation space and Milankovitch orbit cycle sequence of the Paleogene stratigraphic frames in Lunpola basin based on the spectrum snalysis of the logging curve[J]. Progress in Geophysics, 30(3): 1288-1297. doi: 10.6038/pg20150339

    [37]

    伊海生, 2011. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报, 13(4): 456-466 doi: 10.7605/gdlxb.2011.04.009

    Yi H S, 2011. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks[J]. Journal Of Palaeogeography, 13(4): 456-466. doi: 10.7605/gdlxb.2011.04.009

    [38]

    伊海生, 2015. 沉积旋回叠置形式的波形分析及旋回层序划分方法[J]. 沉积学报, 33(5): 855-864 doi: 10.14027/j.cnki.cjxb.2015.05.002

    YI H S, 2015. The waveform graphic analysis of cyclic stacking patterns in sedimentary successions and detection methods of cyclostratigraphic sequences[J]. Acta Sedimentologica Sinica, 33(5): 855-864. doi: 10.14027/j.cnki.cjxb.2015.05.002

    [39]

    郑兴平, 周进高, 吴兴宁, 2004. 碳酸盐岩高频层序定量分析技术及其应用[J]. 中国石油勘探, 9(5): 26-30+2 doi: 10.3969/j.issn.1672-7703.2004.05.005

    Zheng X P, Zhou J G, Wu X N, 2004. Quantitative analysis technology of high frequency sequence of carbonate rock and its application[J]. China Petroleum Exploration, 9(5): 26-30+2. doi: 10.3969/j.issn.1672-7703.2004.05.005

    [40]

    张伟林, 2006. 柴达木盆地新生代高精度磁性地层与青藏高原隆升[D]. 兰州大学.

    Zhang W L, 2006. Cenozoic Uplift of the Tibetan Plateau:Evidence from High Resolution Magnetostratigraphy of the Qaidam Basin[D]. Lanzhou University.

    [41]

    郑希民, 杨柳, 易定红, 等, 2019. 柴达木盆地西部古近系石膏及其硫同位素分布特征[J]. 沉积与特提斯地质, 39(4): 65 − 70

    Zheng X M, Yang L, Yi D H, et al., 2019. Distrbution of gypsum and sulfur isotopes in the Palaeogene strata, western Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 39(4): 65 − 70.

    [42]

    周斌, 汤军, 廖春, 等, 2013. 柴达木盆地油砂山油田上干柴沟组高分辨率层序地层分析[J]. 沉积与特提斯地质, 33(3): 27-33

    Zhou B, Tang J, Liao C, et al. , 2013. High-resolution sequence stratigraphic analysis of the Upper Ganchaigou Formation in the Youshashan Oil Field, Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 33(3): 27-33.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  620
  • PDF下载数:  131
  • 施引文献:  0
出版历程
收稿日期:  2021-03-31
修回日期:  2021-04-22
刊出日期:  2023-12-31

目录