Mapping of alteration minerals and prospecting potential analysis of Pulang porphyry copper deposit: Evidence from remote sensing data of Ziyuan-1 02D satellite
-
摘要: 随着近年来取得重要找矿突破的普朗斑岩型铜矿的规模化开采,进一步摸清首采区外围资源潜力任务紧迫。遥感技术尤其是国产卫星资源一号02D星等高光谱卫星成功发射,为我国高海拔艰苦地区快速精准识别与矿化相关的蚀变矿物提供了可能。针对以往对植被覆盖区高光谱矿物识别有效性方法探索不足,本文选取普朗铜矿区为研究,采用资源一号02D高光谱遥感数据,使用比值植被指数划分植被覆盖区及非植被覆盖区。基于实测波谱,分层次构建了植被覆盖区及非植被覆盖区与普朗铜矿矿化密切相关的绢云母、绿泥石、绿帘石蚀变特征矿物波谱曲线,并采用匹配滤波方法开展了蚀变矿物填图示范应用。野外验证表明:该方法可有效探测普朗斑岩型铜矿外围尤其是首采区东侧植被覆盖区绢云母等蚀变特征矿物分布信息,结果显示普朗首采区东侧具有较大找矿潜力。
-
关键词:
- 资源一号02D星 /
- 实测波谱 /
- 植被覆盖区与非植被覆盖区 /
- 分层次蚀变矿物填图 /
- 普朗斑岩型铜矿
Abstract: With the large-scale mining of the Pulang porphyry copper deposit, which has made an important breakthrough in prospecting in recent years, it is urgent to find further potential resource in the peripheral of the first mining area. Hyperspectral remote sensing technology, especially the successful launch of domestic satellite ZY1-02D hyperspectral satellite, makes it possible to quickly and accurately identify altered minerals related to mineralization in the areas with high altitude and difficult topographic conditions. In view of the inadequate effectiveness of previous hyperspectral mineral identification methods in vegetation areas, this paper selects Pulang mining area as the research area and uses the ZY1-02D hyperspectral remote sensing data to obtain the information of the alteration minerals such as sericite, chlorite and epidote based on the measured spectra. Through the ratio vegetation index, the study area is divided in to vegetation areas and non-vegetation areas, then the corresponding spectra of the alteration minerals are constructed respectively. At the same time, the hyperspectral altered mineral mapping method of Pulang porphyry copper mining area is optimized and established by using the matched filtering method. The field investigation results show that the optimized hierarchical ZY1-02D hyperspectral altered mineral mapping method, which distinguishes vegetation area and non-vegetation area, can effectively detect the alteration characteristic mineral information in the periphery of Pulang porphyry copper mining area, especially in the vegetation covered area on the east side of the first mining area. The field data further reveals that the east part of Pulang first mining area has great prospecting potential. -
-
Adams J B, Smith M O, Johnson P E, 1986. Spectral mixture modeling:A new analysis of rock and soil types at the Viking Lander 1 site[J]. Journal of Geophysical Research:Solid Earth, 91(B8):8098-8112.
Amin, Beiranvand, Pour, et al., 2014. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.[J]. Springer Plus, 3(1):130-130.
Bedini E, 2011. Mineral mapping in the Kap Simpson complex,central East Greenland,using HyMap and ASTER remote sensing data[J]. Advances in Space Research, 47(1):60-73.
Bierwirth P, Huston D, Blewett R, 2002. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia[J]. Economic Geology, 97(4):819-826.
Cudahy T J, Hewson R, Huntington J F, et al., 2002. The performance of the satellite-borne Hyperion hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton, South Australia[C]//IEEE International Geoscience & Remote Sensing Symposium. IEEE.
Jain R, Sharma R U, 2019. Airborne hyperspectral data for mineral mapping in Southeastern Rajasthan, India[J]. International Journal of Applied Earth Observation and Ceoinformation, 81:137-145.
Kruse F A, Boardman J W, Huntington J F, 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(6):1388-1400.
Kumari S K, Debashish C, Pulakesh D, et al., 2014 Hyperion image analysis for iron ore mapping in Gua Iron Ore Region[J]. Int Res J Earth Sci, 2:1-6.
Oskouei M M, Babakan S,2016.Detection of Alteration Minerals Using Hyperion Data Analysis in Lahroud[J]. Journal of the Indian Society of Remote Sensing, 44(5):713-721.
Pignatti S, Cavalli R M, Cuomo V, et al., 2009. Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem:Pollino National Park, Italy[J]. Remote Sensing of Environment, 113(3):622-634.
Xia Q L, Li T F, Kang L,et al., 2021. Study on the PTX Parameters and Fractal Characteristics of Ore-Forming Fluids in the East Ore Section of the Pulang Copper Deposit,Southwest China[J].Journal of Earth Science, 32(2):390-407.
Tayebi M H, Tangestani M H, Vincent R K, 2015. Sub-pixel mapping of iron-bearing minerals using ALI data and MTMF algorithm, Masahim volcano, SE Iran[J]. Arabian Journal of Geosciences, 8(6):3799-3810.
陈琪,赵志芳,姜琦刚,等,2021.基于ASTER与Sentinel-2A融合数据的云南普朗铜矿化蚀变信息提取[J].地质与勘探,57(4):728-738.
董新丰,甘甫平,李娜,等,2020.GF-5矿物填图及矿产资源应用前景评价[J].地质论评,66(S1):67-68.
董新丰,甘甫平,李娜,等,2020.高分五号高光谱影像矿物精细识别[J].遥感学报,24(4):454-464.
董新丰,闫柏琨,李娜,等,2018.基于航空高光谱遥感的沉积变质型铁矿找矿预测——以北祁连镜铁山地区为例[J].地质与勘探,54(5):1013-1023.
范玉华,李文昌,2006.云南普朗斑岩铜矿床地质特征[J].中国地质(2):352-362.
甘甫平,王润生,杨苏明,2002.西藏Hyperion数据蚀变矿物识别初步研究[J].国土资源遥感,14(4):44-50.
甘甫平,尤淑撑,邱振戈,等,2009.国土资源卫星遥感数据应用评估系统构建[J].国土资源遥感(1):7-12.
侯珂,2012.基于CASI/SASI的金矿信息提取研究[D].北京:中国地质大学(北京).
李海涛,顾海燕,张兵,等,2007.基于MNF和SVM的高光谱遥感影像分类研究[J].遥感信息(5):12-15+25+103.
李亮,2014.高光谱遥感目标探测的岩矿弱信息提取[D].北京:中国地质大学(北京).
李娜,董新丰,甘甫平,等,2020.资源一号02D卫星高光谱数据地质调查应用评价[J].航天器工程,29(6):186-191.
李文昌,尹光侯,余海军,等,2011.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报,27(9):2541-2552.
连琛芹,姚佛军,陈懋弘,等,2020.GF-5高光谱数据在植被覆盖区的蚀变信息提取研究——以广东省玉水铜矿为例[J].现代地质,34(4):680-686.
梁树能,甘甫平,闫柏琨,等,2014.绿泥石矿物成分与光谱特征关系研究[J].光谱学与光谱分析,34(7):1763-1768.
林娜,杨武年,刘汉湖,2011.基于高光谱遥感的岩矿端元识别及信息提取研究[J].遥感信息(5):114-117+99.
刘学龙,李文昌,张娜,等,2018.滇西北普朗斑岩铜矿与成矿有关的花岗岩与全球埃达克岩的对比:大数据研究的初步结果[J].岩石学报,34(2):289-302.
宋晚郊,2013.基于ASTER与HYPERION数据的驱龙甲玛矿集区蚀变矿物信息提取研究[D].北京:中国地质大学(北京).
谭康华,李光军,黄定柱,等,2005.普朗大型斑岩铜矿控矿条件[J].云南地质(2):167-174.
陶秋香,2007.植被高光谱遥感分类方法研究[J].山东科技大学学报(自然科学版)(5):61-65.
王国强,和翠英,羊劲松,等,2018.滇西普朗矿区北矿段及外围成矿条件及找矿标志[J].现代矿业,34(7):27-31.
王润生,甘甫平,闫柏琨,等,2010.高光谱矿物填图技术与应用研究[J].国土资源遥感(1):1-13.
王泽,赵良军,牛凯,等.2021,基于遥感影像的植被覆盖度提取方法研究综述[J].农业与技术,41(14):25-29.
吴练荣,曾敏,李志鹏,等,2020.滇西普朗矿区南部及外围化探异常特征及找矿方向[J].现代矿业,36(2):4-7.
吴练荣,翟建军,余璨,等,2021.云南普朗斑岩铜矿晚三叠世构造控矿条件[J].地质与资源,30(2):126-135.
熊燕云,李兵,陈静,等,2019.斑岩铜矿围岩蚀变绿帘石的光谱特征——以德兴铜矿富家坞矿区为例[J].岩石学报,35(12):3811-3824.
叶发旺,孟树,张川,等,2018.航空高光谱识别的高、中、低铝绢云母矿物成因学研究[J].地质学报,92(2):395-412.
曾普胜,侯增谦,李丽辉,等,2004.滇西北普朗斑岩铜矿床成矿时代及其意义[J].地质通报(11):1127-1131.
曾普胜,李文昌,王海平,等,2006.云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征[J].岩石学报(4):989-1000.
曾普胜,莫宣学,喻学惠,等,2003.滇西北中甸斑岩及斑岩铜矿[J].矿床地质(4):393-400.
曾普胜,王海平,莫宣学,等,2004.中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报(5):535-540.
张川,叶发旺,徐清俊,等,2015.基于MTMF的SASI高光谱图像蚀变信息提取[J].地质论评,61(S1):428-429.
张川,叶发旺,徐清俊,等,2017.新疆白杨河铀铍矿区航空高光谱矿物填图及蚀变特征分析[J].国土资源遥感,29(2):160-166.
张少颖,和文言,高雪,等,2020.斑岩铜矿床成矿流体演化:中甸普朗铜矿床蚀变矿物学与热力学模拟[J].岩石学报,36(5):1611-1626.
-
计量
- 文章访问数: 1582
- PDF下载数: 92
- 施引文献: 0