重金属高背景区水稻镉积累与健康安全风险评价:以云南省会泽县娜姑镇为例

刘才泽, 陈敏华, 雷风华, 黄勇, 王雪莲, 王君, 邓国仕, 张越. 2024. 重金属高背景区水稻镉积累与健康安全风险评价:以云南省会泽县娜姑镇为例. 沉积与特提斯地质, 44(1): 194-204. doi: 10.19826/j.cnki.1009-3850.2022.11002
引用本文: 刘才泽, 陈敏华, 雷风华, 黄勇, 王雪莲, 王君, 邓国仕, 张越. 2024. 重金属高背景区水稻镉积累与健康安全风险评价:以云南省会泽县娜姑镇为例. 沉积与特提斯地质, 44(1): 194-204. doi: 10.19826/j.cnki.1009-3850.2022.11002
LIU Caize, CHEN Minhua, LEI Fenghua, HUANG Yong, WANG Xuelian, WANG Jun, DENG Guoshi, ZHANG Yue. 2024. Cd accumulation and human health risk assessment of rice in high background areas of heavy metals: A case study of Nagu Town, Huize County, Yunnan Province. Sedimentary Geology and Tethyan Geology, 44(1): 194-204. doi: 10.19826/j.cnki.1009-3850.2022.11002
Citation: LIU Caize, CHEN Minhua, LEI Fenghua, HUANG Yong, WANG Xuelian, WANG Jun, DENG Guoshi, ZHANG Yue. 2024. Cd accumulation and human health risk assessment of rice in high background areas of heavy metals: A case study of Nagu Town, Huize County, Yunnan Province. Sedimentary Geology and Tethyan Geology, 44(1): 194-204. doi: 10.19826/j.cnki.1009-3850.2022.11002

重金属高背景区水稻镉积累与健康安全风险评价:以云南省会泽县娜姑镇为例

  • 基金项目: 中国地质调查局地质调查项目(DD20230555,DD20221733,DD20201125,DD20190524)
详细信息
    作者简介: 刘才泽(1976—),博士,高级工程师,主要从事地球化学调查与研究工作。E-mail:liucaize@163.com
  • 中图分类号: S153.6;P59

Cd accumulation and human health risk assessment of rice in high background areas of heavy metals: A case study of Nagu Town, Huize County, Yunnan Province

  • 调查发现,重金属高背景区存在土壤中的镉含量超标,而农作物中的镉含量并未超标的现象,但对其原因知之甚少。开展区内农作物镉积累研究并探寻制约农作物镉吸收的因素,对土壤环境质量评价和污染土地生态修复都具有重要意义。以云南省会泽县娜姑镇娜姑坝子为研究区,采集了水稻籽实和配套土壤样品各41件,采用ICP-MS方法检测了Cd含量。通过偏相关、R型聚类、逐步线性回归等分析了水稻镉与土壤元素(指标)之间的相关关系。结果显示,水田土壤镉(Cd)含量为 0.467~1.87 mg/kg,平均为 0.78 mg/kg,是全国土壤背景值的 5.69 倍,58.5% 的样品超过农用地土壤污染风险筛选值。水稻(糙米)镉含量为 0.007~0.062 mg/kg,平均 0.016 mg/kg,均低于食品安全国家标准限值。水稻镉与土壤铀(U)、钼(Mo)等呈显著正相关,与土壤有机碳(TOC)、硫(S)等呈显著负相关,与土壤 Cd 总量和酸碱度(pH)无显著相关性。土壤镉超标而水稻镉不超标的现象可能与土壤富含有机碳有关,该地区土壤有机碳(TOC)含量达全国背景值的5.57倍。当 TOC > 3% 时,水稻镉含量迅速下降。据此提出土壤镉环境等级的有机碳修正方法,将研究区3.42 km25129 亩)Ⅱ等水田修正为Ⅰ等。此外,还提出了一些土壤养护和修复的建议。

  • 加载中
  • 图 1  研究区构造位置(a)、地质矿产(b)、土壤类型(c)及采样点位(d)图

    Figure 1. 

    图 2  研究区土壤镉(a)、有机碳(b)地球化学图

    Figure 2. 

    图 3  研究区土壤元素聚类谱系图

    Figure 3. 

    图 4  研究区水稻镉含量与土壤有机碳含量散点图

    Figure 4. 

    图 5  研究区土壤镉环境等级图(a. 修正前;b. 修正后)

    Figure 5. 

    表 1  水稻和土壤分析测试指标、方法及检出限

    Table 1.  Analysis items, methods and detection limits of the rice and soil

    样品类型分析指标指标代号分析方法单位检出限
    水稻Cd等离子质谱法(ICP-MS)mg/kg0.002
    土壤Cd等离子质谱法(ICP-MS)mg/kg0.02
    Ag发射光谱法(ES)mg/kg0.02
    PbX射线荧光光谱法(XRF)mg/kg2
    U等离子质谱法(ICP-MS)mg/kg0.05
    Mo等离子质谱法(ICP-MS)mg/kg0.1
    有机碳TOC重铬酸钾容量法%0.05
    全碳TC高频红外碳硫仪法%0.1
    N酸碱滴定容量法mg/kg15
    S容量法mg/kg20
    ClX射线荧光光谱法(XRF)mg/kg15
    BrX射线荧光光谱法(XRF)mg/kg0.8
    I催化比色法(COL)mg/kg0.3
    三氧化二铝Al2O3X射线荧光光谱法(XRF)%0.01
    酸碱度pHpH计电极法(ISE)1
    下载: 导出CSV

    表 2  研究区土壤地球化学特征统计参数

    Table 2.  Statistical parameters of soil geochemistry in the study area

    指标名称指标代号单位含量值范围平均值(中位值标准差变异系数全国土壤背景值 (X0A与全国土壤
    背景值之比(/X0A
    Cdmg/kg0.467~1.870.780.710.300.420.1375.69
    Agmg/kg0.057~0.4570.120.100.080.800.0771.56
    Pbmg/kg18.9~29857.537.654.91.46222.62
    Znmg/kg72.7~44116614672.490.50662.52
    Umg/kg1.59~4.532.882.690.620.232.51.15
    Momg/kg0.434~2.131.101.050.340.320.71.57
    三氧化二铝Al2O3%8.04~17.7513.913.91.720.1211.91.17
    Img/kg0.79~2.831.481.390.450.331.11.35
    有机碳TOC%1.95~6.183.343.080.950.310.65.57
    全碳TC%2.66~11.334.534.071.760.431.33.48
    Nmg/kg1902~6567339332199600.307074.80
    Smg/kg317~24646696533360.512452.73
    Clmg/kg62~15490.582.925.20.30781.16
    Brmg/kg1.86~5.273.613.470.950.272.21.64
    酸碱度pH5.84~8.137.267.440.680.0980.91
    注:全国土壤背景值数据来源于王学求等(2016)。
    下载: 导出CSV

    表 3  研究区水稻镉含量特征统计表(含量单位:mg/kg)

    Table 3.  Statistical parameters of rice cadmium in the study area (content unit: mg/kg)

    样品数水稻 Cd土壤 Cd
    平均值
    水稻 Cd /土壤 Cd
    含量值范围平均值中位值标准差变异系数
    410.007~0.0620.0160.0130.0120.750.780.21
    下载: 导出CSV

    表 4  研究区水稻镉含量与土壤元素(指标)相关、偏相关系数

    Table 4.  Correlation and partial correlation coefficients between rice cadmium and soil elements (indices) in the study area

    控制
    变量
    UMoAgPbZnAl2O3CdpHINSTCClBrTOC
    0.52**0.48**0.44**0.42*0.35*0.140.29-0.04-0.22-0.23-0.29-0.29-0.30-0.37*-0.39*
    U0.240.180.200.22-0.21-0.11-0.12-0.43**-0.05-0.41**-0.11-0.21-0.21-0.18
    TOC0.35*0.42**0.35*0.37*0.37*-0.090.30-0.04-0.200.10-0.26-0.03-0.11-0.23
    注:“**”表示显著水平(< 0.01);“*”表示显著水平(< 0.05);当无控制变量时,为Pearson相关系数。
    下载: 导出CSV

    表 5  逐步线性回归过程及参数

    Table 5.  Stepwise linear regression process and parameters

    步骤变量/常量非标准化系数标准化系数τ显著性*
    系数标准误差
    1常量-2.3620.138-17.132<0.001
    Usoil0.1760.0470.5153.7540.001
    2常量-0.7960.468-1.7000.097
    Usoil0.1640.0410.4803.946<0.001
    lgSsoil-0.5490.158-0.422-3.4660.001
    3常量0.4720.5780.8170.419
    Usoil0.2560.0470.7515.432<0.001
    lgSsoil-0.8000.162-0.615-4.927<0.001
    Al2O3soil-0.0600.019-0.490-3.1930.003
    4常量0.0480.5600.0850.932
    Usoil0.2720.0440.7996.173<0.001
    lgSsoil-0.6820.157-0.524-4.336<0.001
    Al2O3soil-0.0510.018-0.421-2.9090.006
    lgIsoil-0.4720.178-0.290-2.6440.012
    注:“*”表示显著水平 < 0.05 时,变量入选模型。
    下载: 导出CSV

    表 6  土壤镉环境等级修正方法

    Table 6.  Correction method of soil cadmium environmental grade

    修正条件修正前等级修正后等级土壤污染风险土壤养护及修复建议
    土壤有机碳(TOC)含量
    > 3%
    污染风险可控通过施用农家肥、秸秆还田等方法,确保土壤有机碳含量不降低。
    污染风险低
    污染风险低
    土壤有机碳(TOC)含量
    ≤ 3%
    维持原有评级污染风险等级
    不变
    增加农家肥、有机肥等施用量,以提高土壤有机碳含量,同时监测农作物镉含量。
    下载: 导出CSV
  • [1]

    Alloway B J, 2013. Bioavailability of elements in soil [C] // Selinus O, Essentials of Medical Geology (2nd ed. ), Springer, Dordrecht, Netherlands, 351 − 373.

    [2]

    Eriksson, J E, 1988. The effects of clay, organic matter and time on adsorption and plant uptake of cadmium added to the soil[J]. Water, Air and Soil Pollution, 40 : 359-373. . doi: 10.1007/BF00163740

    [3]

    Fergusson J E, 1990. The Heavy Elements: Chemistry, Environmental Impact and Health Effects [M]. Oxford, UK.

    [4]

    Gu Q, Yang Z, Yu T, et al. , 2018. From soil to rice – a typical study of transfer and bioaccumulation of heavy metals in China[J]. Acta Agriculturae Scandinavica, 68 (7) : 631-642.

    [5]

    和淑娟, 李丽娜, 杨牧青, 等, 2020. 云南某冰川侵蚀区域土壤高背景值成因及农作物重金属累积规律探究[J]. 环境科学导刊, 40 (2): 68-74

    He S J, Li L N, Yang M Q, et al. , 2020. Research on the causes of high soil background value and the accumulation of heavy metals in crops in a glacier eroded area in Yunnan[J]. Environmental Science Survey, 40 (2): 68-74 .

    [6]

    Johnson A H M, Lalor G C, Preston J, et al. , 1996. Heavy metals in Jamaican surface soils[J]. Environmental Geochemistry and Health, 18 (3) : 113-121. doi: 10.1007/BF01771287

    [7]

    Kabata-pendias A, Pendias H, 1984. Trace Elements in Soils and Plants [M]. CRC Press, Boca Raton, Florida, USA.

    [8]

    李汇文, 王世杰, 白晓永, 等, 2019. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 49 (6) : 986 − 1003.

    Li H W, Wang S J, Bai X Y, et al., 2019. Spatiotemporal evolution of carbon sequestration of limestone weathering in China[J]. Science China-Earth Sciences, 62 : 974 − 991(in Chinese with English abstract).

    [9]

    李佳桐, 李雪, 葛成军, 等, 2018. 琼北土壤重金属高背景值区人群健康风险评价[J]. 热带作物学报, 39 (1): 189-196

    Li J T, Li X, Ge C J, et al. , 2018. Health risk assessment of heavy metal in soils in the north of Hainan province with high background value[J]. Chinese Journal of Tropical Crops, 39 (1): 189-196 .

    [10]

    李杰, 战明国, 钟晓宇, 等, 2021. 广西典型岩溶地区重金属在土壤⁃农作物系统中累积特征及其影响因素[J]. 环境科学学报, 41 (2): 597-606

    Li J, Zhan M G, Zhong X Y, et al. , 2021. Distribution and accumulation of heavy metals in soil⁃crop systems from a typical carbonate rocks area in Guangxi[J]. Acta Scientiae Circumstantiae, 41 (2): 597-606 .

    [11]

    李兴振, 许效松, 潘桂棠, 1995. 泛华夏大陆群与东特提斯构造域演化[J]. 岩相古地理, 15 (4): 1-13

    Li X Z, Xu X S, Pan G T, 1995. Evolution of the Pan-Cathaysian Landmass group and eastern Tethyan tectonic domain[J]. Lithofacies Paleogeography, 15 (4): 1-13 .

    [12]

    廖启林, 刘聪, 王轶, 等, 2015. 水稻吸收Cd的地球化学控制因素研究--以苏锡常典型区为例[J]. 中国地质, 42 (5): 1621 − 1632

    Liao Q L, Liu C, Wang Y, et a1., Geochemical characteristics of rice uptake of cadmium and its main controlling factors: A case study of the Suxichang (Suzhou-Wuxi-Changzhou) typical area[J]. Geology in China, 2015, 42 (5): 1621 − 1632(in Chinese with English abstract).

    [13]

    刘才泽, 王永华, 赵禁, 等, 2022. 川东北地区水稻镉积累与生态健康风险评价[J]. 中国地质, 49 (3): 695-705 doi: 10.12029/gc20220302

    Liu C Z, Wang Y H, Zhao J, et al. , 2022. Assessment of cadmium accumulation in rice and risk on human health in the northeast SichuanProvince[J]. Geology in China, 49 (3): 695-705 . doi: 10.12029/gc20220302

    [14]

    刘鸿雁, 蒋子涵, 戴景钰, 等, 2019. 岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J]. 中国科学: 地球科学, 49 (12) : 1974 − 1981.

    Liu H Y, Jiang Z H, Dai J Y, et al., 2019. Rock crevices determine woody and herbaceous plant cover in the karst critical zone[J]. Science China-Earth Sciences, 62 : 1756 − 1763(in Chinese with English abstract).

    [15]

    刘巍, 陈效民, 景峰, 等, 2019. 生物质炭对土壤-水稻系统中Cd迁移累积的影响[J]. 水土保持学报, 33 (1): 323-327

    Liu W, Chen X M, Jing F, et al. , 2019. Effects of biochar amendment on translocation and accumulation of Cd in soil-rice system[J]. Journal of Soil and Water Conservation, 33 (1): 323-327 .

    [16]

    骆永明, 滕应, 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33 (2): 145-152

    Luo Y M, Teng Y, 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 33 (2): 145-152 .

    [17]

    马宏宏, 彭敏, 郭飞, 等, 2021. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学, 42 (3): 1514-1522

    Ma H H, Peng M, Ge F, et al. , 2021. Factors affecting the translocation and accumulation of cadmium in a soil-crop system in a typical karst area of Guangxi province, China[J]. Environmental Science, 42 (3): 1514-1522 .

    [18]

    唐豆豆, 袁旭音, 汪宜敏, 等, 2018. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 37 (1): 18-26

    Tang D D, Yuan X Y, Wang Y M, et al. , 2018. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 37 (1): 18-26 .

    [19]

    唐瑞玲, 王惠艳, 吕许朋, 等, 2020. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 34 (5): 917 − 927

    Tang R L, Wang H Y, Lü X P, et al., Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, Southwestern China[J]. Geoscience, 2020, 34 (5): 917 − 927(in Chinese with English abstract).

    [20]

    田发祥, 纪雄辉, 郭勇军, 等, 2015. 有机水溶肥在镉污染稻田中的应用效果研究[J]. 湖南农业科学, (8): 53-56

    Tian F X, Ji X H, Guo Y J, et al. , 2015. Application efects of organic water soluble fertilizer in cadmium-polluted paddy fields[J]. Hunan Agricultural Sciences, (8): 53-56 .

    [21]

    王学求, 周建, 徐善法, 等, 2016. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 43 (5): 1469-1480

    Wang X Q, Zhou J, Xu S F, et al. , 2016. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 43 (5): 1469-1480 .

    [22]

    王永华, 周雪梅, 谢岿锐, 等, 2019. 中国西南地区地球化学图集[M]. 武汉: 中国地质大学出版社.

    Wang Y H, Zhou X M, Xie K R, 2019. Geochemical atlas of South China[M]. Wuhan : China University of Geosciences Press (in Chinese)(in Chinese with English abstract).

    [23]

    Wen Y B, Li W, Yang Z F, et al. , 2020. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China[J]. Environmental Polluttion, 258 : 113645. doi: 10.1016/j.envpol.2019.113645

    [24]

    温琰茂, 曾水泉, 潘树荣, 等, 1994. 中国东部石灰岩土壤元素含量分异规律研究[J]. 地理科学, 14 (1): 16-21

    Wen Y M, Zeng S Q, Pan S R, et al. , 1994. Distributive tendency 0f elem ent c0ncentrations in soils derived from limestone in eastern china[J]. Sclentia Geographica Sinica, 14 (1): 16-21 .

    [25]

    吴见珣, 杨赵, 杨涛明, 等, 2020. 云南某典型喀斯特区域农田土壤镉、砷污染特征及来源[J]. 环境科学导刊, 40 (3): 28-33

    Wu J X, Yang Z, Yang T M, et al. , 2020. Pollution characteristics and source analysis of cadmium and arsenic in farmland soils of a typical karst region in Yunnan[J]. Environmental Science Survey, 40 (3): 28-33 .

    [26]

    夏学齐, 季峻峰, 杨忠芳, 等, 2022. 母岩类型对土壤和沉积物镉背景的控制: 以贵州为例[J]. 地学前缘, 29 (4): 438-447

    Xia X Q, Ji J F, Yang Z F, et al. , 2022. Parent rock type control on cadmium background in soil and sediment: an example from Guizhou province[J]. Earth Science Frontiers, 29 (4): 438-447 .

    [27]

    熊婕, 朱奇宏, 黄道友, 等, 2019. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 38 (01) : 28 − 34.

    Xiong J, Zhu Q H, Huang D Y, et al., 2019. Prediction model for the accumulation of cadmium in rice in typical paddy fields of south China[J]. Journal of Agro-Environment Science, 2019, 38 (1) : 22 − 28 (in Chinese with English abstract).

    [28]

    徐克全, 金立新, 张华, 等, 2021. 高硒、高镉地质背景下水稻种植实验研究[J]. 沉积与特提斯地质, 41 (4): 649-656

    Xu K Q, Jin L X, Zhang H, et al. , 2021. Rice planting experiment under Se-rich and Cd-high geological background[J]. Sedimentary Geology and Tethyan Geology, 41 (4): 649-656 .

    [29]

    杨琼, 杨忠芳, 张起钻, 等, 2021. 中国广西岩溶地质高背景区土壤-水稻系统 Cd 等重金属生态风险评价[J]. 51 (8) : 1317 − 1331.

    Yang Q, Yang Z F, Zhang Q Z, et al., 2021. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China[J]. Science China Earth Sciences, 64 (7) : 1126 − 1139(in Chinese with English abstract).

    [30]

    Yang Q, Yang Z F, Filippelli G M, et al. , 2021. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China[J]. Chemical Geology, 567: 120081 doi: 10.1016/j.chemgeo.2021.120081

    [31]

    易甜, 彭立军, 崔文文, 等, 2020. 湖北省地质高背景地区水稻-镉的耕地安全生产阈值研究[J]. 湖北农业科学, 59 (24): 164-168

    Yi T, Peng L J, Cui W W, et al. , 2020. Study on rice-Cadmium of safety production threshold of cultivated land in high geological background area of Hubei province[J]. Hubei Agricultural Sciences, 59 (24): 164-168 .

    [32]

    尹福光, 孙洁, 任飞, 等, 2016. 中国西南区域地质[M]. 武汉: 中国地质大学出版社.

    Yin F G, Sun J, Ren F, et al., 2016. Regional geology of Southwest China[M]. Wuhan : China University of Geosciences Press (in Chinese)(in Chinese with English abstract).

    [33]

    殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分[J]. 地球科学-中国地质大学学报, 24 (1): 1-12

    Yin H F, Wu S B, Du Y S, et al. , 1999. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science-Journal of China University of Geosciences, 24 (1): 1-12 .

    [34]

    袁吉文, 万青青, 2004. 云南城乡居民膳食结构的20年变迁[J]. 昆明医学院学报, 25 (专辑): 4-9

    Yuan J W, Wan Q Q, 2004. The transition of dietary pattern of residents in rural and urban of Yunnan between 1982 and 2002[J]. Academic Journal of Kunming Medical College, 25: 4-9 .

    [35]

    曾琴琴, 王永华, 刘才泽, 等, 2021. 四川省南部县土壤地球化学元素分布特征研究[J]. 沉积与特提斯地质, 41 (4): 657-663

    Zeng Q Q, Wang Y H, Liu C Z, et al. , 2021. A study on distribution of elements of soil in Nanbu county, Sichuan province[J]. Sedimentary Geology and Tethyan Geology, 41 (4): 657-663 .

    [36]

    张风雷, 郑循艺, 陈琦伟, 等, 2017. 重金属地质高背景区及工业区农作物重金属健康风险评价——以重庆市梁平区现代农业示范区为例[J]. 地球与环境, 45 (5): 567-575

    Zhang F H, Zheng X Y, Chen Q W, et al. , 2017. Health risk assessment of heavy metals in crops from geological background of high heavy metals and industrial suburb—taking a modern agricultural demonstration zone of Liangping county as an example[J]. Earth and Environment, 45 (5): 567-575 .

    [37]

    张富贵, 成晓梦, 马宏宏, 等, 2022. 科学构建土壤重金属高背景区生态风险评价方法的探讨[J]. 浙江大学学报(农业与生命科学版), 48 (1): 57-67

    Zhang F G, Cheng X M, Ma H H, et al. , 2022. Discuss on scientific construction of ecological risk assessment methods in the high background areas of soil heavy metals[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 48 (1): 57-67 .

    [38]

    张强, 万青青, 刘志涛, 等, 2016. 云南城乡居民营养素摄入状况及膳食结构分析[J]. 中国公共卫生, 32 (5): 661-663 doi: 10.11847/zgggws2016-32-05-26

    Zhang Q, Wan Q Q, Liu Z T, et al. , 2016. Nutrients intake and dietary structure among residents in Yunnan province[J]. China Journal Public Health, 32(5): 661-663 . doi: 10.11847/zgggws2016-32-05-26

    [39]

    张艳, 王丹, 李黎, 2013. 豌豆对U和Cd复合胁迫反应及其积累特征[J]. 辐射研究与辐射工艺学报, 31 (1): 010401

    Zhang Y, Wang D, Li L, 2013. Response of peas to U and Cd combined stress and their accumulation characteristic[J]. Journal of Radiation Research and Radiation Proces, 31 (1): 010401 .

    [40]

    张振明, 肖艳辉, 何金明, 等, 2015. 钼对低镉水平下小白菜的生长及镉含量的影响[J]. 韶关学院学报·自然科学, 36 (4): 36-40

    Zhang Z M, Xiao Y H, He J M, et al. , 2015. Effect of molybdenum on growth and cadmium content in Chinese white cabbage under low cadmium concentration medium[J]. Journal of Shaoguan University-Natural Science, 36 (4): 36-40 .

    [41]

    Zhao K, Zhang W, Zhou L, et al. , 2009. Modeling transfer of heavy metals in soil–rice system and their risk assessment in paddy fields[J]. Environmental Earth Sciences, 59 (3) : 519-527. doi: 10.1007/s12665-009-0049-x

    [42]

    赵中秋, 后立胜, 蔡运龙, 2006. 西南喀斯特地区土壤退化过程与机理探讨[J]. 地学前缘, 13 (3): 185-189 doi: 10.3321/j.issn:1005-2321.2006.03.025

    Zhao Z Q, Hou L S, Cai Y L, 2006. The process and mechanism of soil degradation in karst area in Southwest China[J]. Earth Science Frontiers, 13 (3): 185-189 . doi: 10.3321/j.issn:1005-2321.2006.03.025

  • 加载中

(5)

(6)

计量
  • 文章访问数:  651
  • PDF下载数:  357
  • 施引文献:  0
出版历程
收稿日期:  2022-06-06
修回日期:  2022-09-19
录用日期:  2022-09-26
刊出日期:  2024-03-31

目录