藏南隆子县模麓温泉群水文地球化学特征及成因机制研究

周鹏, 孙明露, 张云辉, 荣峰, 达娃, 万忠焱, 刘恭喜, 彭清华, 胡华山, 旦增, 刘振峰. 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究. 沉积与特提斯地质, 43(2): 322-339. doi: 10.19826/j.cnki.1009-3850.2023.04003
引用本文: 周鹏, 孙明露, 张云辉, 荣峰, 达娃, 万忠焱, 刘恭喜, 彭清华, 胡华山, 旦增, 刘振峰. 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究. 沉积与特提斯地质, 43(2): 322-339. doi: 10.19826/j.cnki.1009-3850.2023.04003
ZHOU Peng, SUN Minglu, ZHANG Yunhui, RONG Feng, DA Wa, WAN Zhongyan, LIU Gongxi, PENG Qinghua, HU Huashan, DAN Zeng, LIU Zhenfeng. 2023. Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322-339. doi: 10.19826/j.cnki.1009-3850.2023.04003
Citation: ZHOU Peng, SUN Minglu, ZHANG Yunhui, RONG Feng, DA Wa, WAN Zhongyan, LIU Gongxi, PENG Qinghua, HU Huashan, DAN Zeng, LIU Zhenfeng. 2023. Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322-339. doi: 10.19826/j.cnki.1009-3850.2023.04003

藏南隆子县模麓温泉群水文地球化学特征及成因机制研究

  • 基金项目: 国家自然科学基金(42072313,42102334)、中国地质调查局项目(ZD20220418)、西藏自治区找矿专项资金项目(GZFCG2022-7078)
详细信息
    作者简介: 周鹏(1987—),男,工程师,从事地热地质调查研究。E-mail:626501717@qq.com
    通讯作者: 孙明露(1996—),女,硕士,主要从事地热成因研究。E-mail:smlu0530@163.com
  • 中图分类号: P314

Hydrogeochemical Characteristics and Genetic Mechanism of the Molu Geothermal Springs in the Longzi County, Southern Tibet

More Information
  • 藏南地区地热资源丰富,是喜马拉雅地热带的重要组成部分,有望成为新的地热资源开发靶区。本文以藏南桑日-错那活动构造带内模麓温泉群为研究对象,以水化学和氢氧氚同位素为研究方法,分析模麓温泉群的水岩作用、热储温度、补给来源及径流时间,揭示了地热水的成因机制。模麓地热水pH在6.6~7.2之间,TDS为1908mg/L~2326 mg/L,水化学类型以HCO3·Cl-Na型和HCO3·Cl-Na·Ca型为主。地热水中主要阴阳离子来源于硅酸盐矿物的溶解和少量地球深部物质。利用硅-焓方程法和硅-焓图解法计算的初始热储温度为198℃~256 ℃,冷水混入比例为68%~85%。此外,对地热水中的Li、B、F等微量元素分析得出,研究区温泉水中微量组分除来自水-岩作用外,应该还与深部流体的混入有关,且该地区的氢氧同位素特征表明地下水补给主要来源于大气降水,补给高程为5652m~5664m,模麓地热水中的氚含量<0.5TU,表明其地热水为老水,有更长的径流时间,为水-岩作用提供了充足的时间,而宿麦郎曲河水为新水,补给径流时间短。研究区地热水与围岩遮拉组砂板岩发生水-岩作用,进行离子交换作用,在地下水运移过程中加热形成地热水,最终在有利构造部位出露形成温泉群。本次研究初步揭示了藏南模麓温泉的成因机制,可为藏南地热资源开发利用提供理论参考。

  • 加载中
  • 图 1  研究区大地构造位置(a)和 地质简图和采样点分布图(b)

    Figure 1. 

    图 2  模麓地区地热水组分的Schoeller图;(a)物理化学参数与常量组分;(b)微量组分

    Figure 2. 

    图 3  模麓地区地热水的Piper三线图(羊八井和古堆地热井数据引自刘昭,2014王思琪,2017

    Figure 3. 

    图 4  模麓地区地热水主要元素和氯含量关系图 (羊八井和古堆地热井数据引自刘昭,2014王思琪,2017

    Figure 4. 

    图 5  模麓地区地热水的Ca/Na vs. Mg/Na(a) 和 Ca/Na vs. HCO3/Na(b)比值图

    Figure 5. 

    图 6  模麓地区地热水离子组合摩尔比值关系图 (羊八井和古堆地热井数据引自刘昭,2014王思琪 ,2017)

    Figure 6. 

    图 7  在100℃(黑线)和200℃(红线)下(a)K2O-Al2O3-SiO2-H2O系统和(b)Na2O-Al2O3-SiO2-H2O系统的稳定性图

    Figure 7. 

    图 8  (a) 模麓地区地热水Na-K-Mg三角图(Giggenbach, 1988)(地热井数据引自刘昭(2014)和王思琪(2017)) (b) SiO2溶解判别图羊八井和古堆

    Figure 8. 

    图 9  模麓地区地热水硅-焓方程法图

    Figure 9. 

    图 10  (a) 模麓地区地热水的硅-焓图解法图 (b)δD-δ18O同位素关系图(羊八井和古堆地热井数据引自刘昭(2014)和王思琪(2017))

    Figure 10. 

    图 11  模麓温泉成因模型

    Figure 11. 

  • [1]

    Alçiçek H, Bülbül A, Brogi A, et al. , 2018. Origin, evolution and geothermometry of thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)[J]. Journal of Volcanology and Geothermal Research, 349: 1-30. doi: 10.1016/j.jvolgeores.2017.07.021

    [2]

    Arnórsson S, Andrésdóttir A, 1995. Processes controlling the distribution of boron and chlorine in natural waters in Iceland[J]. Geochimica et Cosmochimica Acta, 59(20): 4125-4146. doi: 10.1016/0016-7037(95)00278-8

    [3]

    Ayadi R, Trabelsi R, Zouari K, et al. , 2018. Hydrogeological and hydrochemical investigation of groundwater using environmental isotopes (18O, 2H, 3H, 14C) and chemical tracers: a case study of the intermediate aquifer, Sfax, southeastern Tunisia[J]. Hydrogeology Journal, 26(4): 983-1007. doi: 10.1007/s10040-017-1702-1

    [4]

    Bakari S S, Aagaard P, Vogt R D, et al. , 2013. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania[J]. Journal of Geochemical Exploration, 130: 1-14. doi: 10.1016/j.gexplo.2013.02.008

    [5]

    Cao H W, Pei Q M, Santosh M, et al. , 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 234: 104229. doi: 10.1016/j.earscirev.2022.104229

    [6]

    曹华文, 李光明, 张林奎, 等, 2022. 喜马拉雅淡色花岗岩成因与稀有金属成矿潜力[J]. 沉积与特提斯地质, 42(2): 189 − 211

    Cao H W, Li G M, Zhang L K, et al., 2022. Genesis of Himalayan Leucogranite and its potentiality of rare−metal mineralization[J]. Sedimentary Geology and Tethyan Geology, 42(2): 189 − 211.

    [7]

    Chang X W, Xu M, Jiang L W, et al. , 2021. Hydrogeochemical Characteristics and Formation of Low-Temperature Geothermal Waters in Mangbang-Longling Area of Western Yunnan, China[J]. Journal of Chemistry, 2021: 1-13.

    [8]

    Cheng Y, Pang Z, Kong Y, et al. , 2022. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey[J]. Geothermics, 102: 102386. doi: 10.1016/j.geothermics.2022.102386

    [9]

    Dansgaard W, 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436-468. doi: 10.1111/j.2153-3490.1964.tb00181.x

    [10]

    董国臣, 莫宣学, 赵志丹, 等, 2021. 大陆碰撞过程的火山岩响应: 以西藏林周林子宗火山岩为例[J]. 沉积与特提斯地质, 41(2): 332 − 339

    Dong G C, Mo X X, Zhao Z D, et al. , A response of volcanic rocks to the India−Asia continental collision: A case study on Linzizong volcanic rocks in Linzhou, Tibet[J]. Sedimentary Geology and Tethyan Geology, 41(2): 332 − 339.

    [11]

    多吉卫色, 索朗次仁, 平措朗杰, 等, 2023. 西藏自治区隆子县土壤硒地球化学特征及影响因素[J]. 岩矿测试, 42(1): 177-191 doi: 10.15898/j.cnki.11-2131/td.202204240087

    Duo J W S, Suo L C R, Ping C L J, et al. , 2023. Geochemical Characteristics and Influencing Factors of Soil Selenium in Longzi County, Tibet Autonomous Region[J]. Rock and Mineral Analysis, 42(1): 177-191. doi: 10.15898/j.cnki.11-2131/td.202204240087

    [12]

    Erbaş H A, Bozdağ A, 2022. Hydrogeochemical characteristics and evaluation of the geothermal fluids in the Gazlıgöl geothermal field (Afyonkarahisar), Western Anatolia, Turkey[J]. Geothermics, 105: 102543. doi: 10.1016/j.geothermics.2022.102543

    [13]

    Fan Y F, Pang Z H, Liao D W, et al. , 2019. Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau[J]. Water, 11(8): 1631. doi: 10.3390/w11081631

    [14]

    Fournier R O, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4

    [15]

    Garrels R M, Christ C L, 1965. Solutions, minerals and equilibria[M]. Harper and Row, New York, 1965. 1−450.

    [16]

    Giggenbach W F, 1988. Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et cosmochimica acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    [17]

    Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I

    [18]

    Gil-Márquez J M, Sültenfuß J, Andreo B, et al. , 2020. Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings[J]. Journal of Hydrology, 580: 124263. doi: 10.1016/j.jhydrol.2019.124263

    [19]

    顾慰祖, 庞忠和, 王全九, 2011. 同位素水文学[M]. 北京: 科学出版社.

    Gu W Z, Pang Z H, Wang Q J, 2011. Isotopic Hydrology[M]. Beijing: Science Press.

    [20]

    Gudala M, Govindarajan S K, Yan B, et al. , 2022. Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling[J]. Energy, 253: 124173. doi: 10.1016/j.energy.2022.124173

    [21]

    Guo Q H, Pang Z H, Wang Y C, et al. , 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75. doi: 10.1016/j.apgeochem.2017.03.007

    [22]

    Guo Q H, Planer-Friedrich B, Liu M L, et al. , 2019. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 513: 32-43. doi: 10.1016/j.chemgeo.2019.03.008

    [23]

    Guo Q H, Wang Y C, Liu W, 2009. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China[J]. Environmental Earth Sciences, 59(7): 1589-1597.

    [24]

    郭镜, 夏时斌, 2022. 川东褶皱带地热系统的空间载体——相互连通的断裂系统: 以四川广安牟家镇地热井为例[J]. 沉积与特提斯地质, 42(4): 642-652

    Guo J, Xia S B, 2022. Spatial carrier of geothermal system in eastern Sichuan fold zone—interconnected fault system: A case study of geothermal well in Moujia Town, Guang'an, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 42(4): 642-652.

    [25]

    郭清海, 2020. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 94(12): 3544 − 3554

    Guo Q H. 2020. Magma−heated geothermal systems and hydrogeochemical evidence of their occurrence [J]. Acta Geologica Sinica, 94(12): 3544 − 3554.

    [26]

    Hao C M, Zhang W, Gui H R, 2020. Hydrogeochemistry characteristic contrasts between low- and high-antimony in shallow drinkable groundwater at the largest antimony mine in hunan province, China[J]. Applied Geochemistry, 117: 104584. doi: 10.1016/j.apgeochem.2020.104584

    [27]

    Helgeson H C, Garrels, R. M. , MacKenzie, F. T, 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications[J]. Geochimica et Cosmochimica Acta, 33(4): 455-481. doi: 10.1016/0016-7037(69)90127-6

    [28]

    胡智文, 陈俊旭, 赵志芳, 等, 2021. 隆子县土地利用多样化及其聚集度分析[J]. 西部林业科学, 50(3): 164-170.

    Hu Z W, Chen J X, Zhao Z F, et al. , 2021. Analysis of Land Use Diversification and Its Aggregation in Longzi County [J]. Journal of West China Forestry Science, 50(3): 164170.

    [29]

    胡志华, 高洪雷, 万汉平, 等, 2022. 西藏羊八井地热田水热蚀变的时空演化特征[J]. 地质论评, 68(1): 359-374

    Hu Z H, Gao H L, Wan H P et al. , 2022. Temporal and spatial evolution of hydrothermal alteration in the Yangbajing Geothermal Field, Xizang(Tibet) [J]. Geological Review, 68(1): 359-374.

    [30]

    Jeelani G, Kumar U S, Bhat N A, et al. , 2015. Variation ofδ18O, δD and3H in karst springs of south Kashmir, western Himalayas (India)[J]. Hydrological Processes, 29(4): 522-530. doi: 10.1002/hyp.10162

    [31]

    Li J X, Wang X Y, Ruan C X, et al. , 2022a. Enrichment mechanisms of lithium for the geothermal springs in the southern Tibet, China[J]. Journal of Hydrology, 612: 128022. doi: 10.1016/j.jhydrol.2022.128022

    [32]

    Li X, Huang X, Liao X, et al. , 2020. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500

    [33]

    李光明, 张林奎, 吴建阳, 等, 2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质, 40(1): 1-14

    Li G M, Zhang L G, Wu J Y, et al. , 2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China[J]. Sedimentary Geology and Tethyan Geology, 40(1): 1-14.

    [34]

    李义曼, 陈凯, 天娇, 等, 2022. 广东丰顺汤坑地热田热水中稀土元素特征及其影响因素[J]. 地质论评, 68(3): 993-1005

    Li Y M, Chen K, Tian J et al. , 2022. REE characteristics and their influencing factors of the geothermal water in Tangkeng geothermal field, Fengshun, Guangdong Province[J]. Geological Review, 68(3): 993-1005.

    [35]

    Liu J T, Gao Z J, Wang Z Y, et al. , 2020. Hydrogeochemical processes and suitability assessment of groundwater in the Jiaodong Peninsula, China[J]. Environmental Monitoring and Assessment, 192(6): 384. doi: 10.1007/s10661-020-08356-5

    [36]

    刘昭, 2014. 西藏尼木—那曲地热带典型高温地热系统形成机理研究[D]. 北京: 中国地质科学院.

    Liu Z, 2014. The forming mechanism of typical high−temperature geothermal systems in Nimu−Naqu geothermal belt, Tibet[D]. Beijing: Chinese Academy of Geological Sciences.

    [37]

    Luo J, Li Y M, Tian J, et al. , 2022. Geochemistry of geothermal fluid with implications on circulation and evolution in Fengshun-Tangkeng geothermal field, South China[J]. Geothermics, 100: 102323. doi: 10.1016/j.geothermics.2021.102323

    [38]

    Ma J, Sun L H, Chen S G, et al. , 2020. Hydrochemical Characteristics and Water Quality Assessment of Surface Water and Groundwater in Agriculture Demonstration Base, Jiagou District, Northern Anhui Province, China[J]. Nature Environment and Pollution Technology, 19(4): 1713-1721. doi: 10.46488/NEPT.2020.v19i04.042

    [39]

    马子宁, 韩中鹏, 李亚林, 等, 2022. 西藏南部康巴穹隆剥露历史分析: 来自低温热年代学的证据[J]. 沉积与特提斯地质, 42(2): 300 − 309

    Ma Z N, Han Z P, Li Y L, et al. , 2022. Exhumation history of the Kampa dome in the southern Tibet: Evidence from low−temperature thermochronology [J]. Sedimentary Geology and Tethyan Geology, 42(2): 300 − 309.

    [40]

    Moraga J, Duzgun H S, Cavur M, et al. , 2022. The Geothermal Artificial Intelligence for geothermal exploration[J]. Renewable Energy, 192: 134-149. doi: 10.1016/j.renene.2022.04.113

    [41]

    Muther T, Syed F I, Lancaster A T, et al. , 2022. Geothermal 4.0: AI-enabled geothermal reservoir development- current status, potentials, limitations, and ways forward[J]. Geothermics, 100: 102348. doi: 10.1016/j.geothermics.2022.102348

    [42]

    宁爱凤, 尹观, 刘天仇, 2000. 拉萨河地区的大气降水同位素分布特征[J]. 矿物岩石, 20(3): 95-95

    Ning A F, Yin G, Liu T C, 2000. Characteristics of Isotope Distribution of Atmospheric Precipitation in the Lsha River Area[J]. Jmineral Petrol, 20(3): 95-95.

    [43]

    Pérez-Zárate D, Prol-Ledesma R M, Rodríguez-Díaz A A, et al. , 2022. Soil gas flux, hydrogeochemistry and multicomponent geothermometry of thermal springs in the La Escalera geothermal prospect, Mexico[J]. Applied Geochemistry, 139: 105256. doi: 10.1016/j.apgeochem.2022.105256

    [44]

    Piper A M, 1944. A graphic procedure in the geochemical interpretation of water-analyses[J]. Transactions-American Geophysical Union, 25(6): 914-923. doi: 10.1029/TR025i006p00914

    [45]

    卿成实, 张志, 张林奎, 等, 2023. 西藏隆子县扎西康铅锌多金属矿床ⅩⅤ号矿体元素分带特征研究[J]. 沉积与特提斯地质, 43(1): 130-144 doi: 10.19826/j.cnki.1009-3850.2022.09002

    Qing C S, Zhang Z, Zhang L K, et al. , 2022. The element zonation characteristics of No. ⅩⅤ ore body in Zhaxikang lead-zinc polymetallic deposit, Tibet[J]. Sedimentary Geology and Tethyan Geology, 43(1): 130-144. doi: 10.19826/j.cnki.1009-3850.2022.09002

    [46]

    邱楠生, 唐博宁, 朱传庆, 2022. 中国大陆地区温泉分布的深部热背景[J]. 地质学报, 96(1): 195-207

    Qiu N S, Tang B N, Zhu C Q, 2022. Deep thermal background of hot spring distribution in the Chinese continent [J]. Acta Geologica Sinica, 96(1): 195-207.

    [47]

    Ren X F, Li P Y, He X D, et al. , 2021. Hydrogeochemical Processes Affecting Groundwater Chemistry in the Central Part of the Guanzhong Basin, China[J]. Arch Environ Contam Toxicol, 80(1): 74-91. doi: 10.1007/s00244-020-00772-5

    [48]

    Shvartsev S L, Sun Z, Borzenko S V, et al. , 2018. Geochemistry of the thermal waters in Jiangxi Province, China[J]. Applied Geochemistry, 96: 113-130. doi: 10.1016/j.apgeochem.2018.06.010

    [49]

    Su J B, Tan H B, 2022. The genesis of Rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northern Yadong-Gulu rift[J]. Ore Geology Reviews, 147: 104987. doi: 10.1016/j.oregeorev.2022.104987

    [50]

    苏艳, 马致远, 刘方, 等, 2007. 西安咸阳地下热水氘过量参数研究[J]. 煤田地质与勘察, 35(3): 39 − 41.

    Su Y, Ma Z Y, Liu F, et al. , 2007. Deuterium excess parameter features study on thermal groundwater of Xi′an and Xianyang[J]. Coal Geology & Exploration, 35(3): 39 − 42.

    [51]

    隋丽嫒, 周训, 李状, 等, 2022. 安徽滁河断裂带温泉的水化学和同位素特征及成因分析[J]. 地质论评, 68(3): 981-992

    Sui L Y, Zhou X, Li Z et al. , 2022. Hydrochemical and isotopic characteristics and genesis of hot springs in the Chuhe fault zone, Anhui [J]. Geological Review, 68(3): 981-992.

    [52]

    谭捍东, 魏文博, Martyn Unsworth, 等, 2004. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J]. 地球物理学报, 47(4): 685 − 690

    Tan H D, Wei W B, Martyn U, et al.. 2014. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang plateau[J]. Chinese Journal of Geophysics, 47(4): 685 − 690.

    [53]

    佟伟, 章铭陶, 张知非, 等, 2000. 西藏地热[M]. 北京: 科学出版社.

    Tong W, Zhang M T, Zhang Z F, et al. , 2000. Geothermals Beneath Xizang (Tibetan) Plateau[M]. Beijing: science press.

    [54]

    佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志[M]. 北京: 科学出版社.

    Tong W, Liao Z J, Wen S B, et al. , 2000. Thermal Spring in Tibet[M]. Beijing: science press.

    [55]

    Wang C G, Zheng M P, 2019. Hydrochemical Characteristics and Evolution of Hot Fluids in the Gudui Geothermal Field in Comei County, Himalayas[J]. Geothermics, 81: 243-258. doi: 10.1016/j.geothermics.2019.05.010

    [56]

    王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923-1937

    Wang G L, Lin W J, 2020. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(7): 1923-1937.

    [57]

    王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449-450

    Wang G L, Zhang W, Liang J Y, et al. , 2017. Evaluation of Geothermal Resources Potential in China[J]. Acta Geoscientica Sinica, 38(4): 449-450.

    [58]

    王军, 刘天仇, 尹观, 2000. 西藏雅鲁藏布江中、下游地区大气降水同位素分布特征[J]. 地质地球化学, 28(1): 63-67

    Wang J, Liu T C, Yin G, 2000. Characteristics of Isotope Distribution in Precipition in The Middle-Lower Reaches of Yarlung Zangbo River[J]. Earth and Environment, 28(1): 63-67.

    [59]

    王思琪, 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理[D]. 北京: 中国地质大学(北京).

    Wang S Q, 2017. Hydrogeochemical Processes and Genesis Machenism of High−temperature Geothermal System in Gudui, Tibet[D]. Beijing: China University of Geosciences(Beijing).

    [60]

    Wang Y C, Gu H Y, Li D, et al. , 2021. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet[J]. Environmental Earth Sciences, 80(11): 415. doi: 10.1007/s12665-021-09577-8

    [61]

    王迎春, 周金林, 李亮, 等, 2022. 羊八井地热田地热地质条件及其对超临界地热资源勘探的启示[J]. 天然气工业, 42(4): 35-45

    Wang Y C, Zhou J L, Li L, et al. , 2022. Geothermal geological conditions in the Yangbajing geothermal field and its enlightenment to the exploration of supercritical geothermal resources[J]. Natural Gas Industry, 42(4): 35-45.

    [62]

    Wang Y, Li L, Wen H, et al. , 2022. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet[J]. Journal of Hydrology, 604: 127243. doi: 10.1016/j.jhydrol.2021.127243

    [63]

    魏文博, 金胜, 叶高峰, 等, 2009. 藏南岩石圈导电性结构与流变性: 超宽频带大地电磁测深研究结果[J]. 中国科学, 39(11): 1591-1606

    Wei W B, Jin S, Ye G F, et al, 2009. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magmeto tulleric sounding[J]. Scientia Sinica(Terrae), 39(11): 1591-1606.

    [64]

    卫克勤, 林瑞芬, 王志祥, 1983. 西藏羊八井地热水的氢、氧稳定同位素组成及氚含量[J]. 地球化学, 12(4): 338-346

    Wei K Q, Lin R F, Wang Z X, 1983. Hydrogen and Oxygen Stable Isotopic Composition and Hydrogen and Tritium Content of Waters from Yangbajain Geothermal Area, Xizang, China[J]. Geochemica, 12(4): 338-346.

    [65]

    许继影, 桂和荣, 葛春贵, 等, 2021. 淮北青东煤矿深层地热水的水文地球化学特征与水源识别[J]. 工程地质学报, 29(4): 1037-1047

    Xu J Y, Gui H R, Ge C G, et al. , 2021. Hydrogeochemical Characteristics and Source Identification of Deep Geothermal Water in Qingdong Coal Mine, Huaibei, Anhui Province[J]. Journal of Engineering Geology, 29(4): 1037-1047.

    [66]

    许鹏, 谭红兵, 张燕飞, 等, 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142-1154

    Xu P, Tan H B, Zhang Y F, et al. , 2018. Geochemical characteristics and source mechanism of geothermal water in Tethys Himalaya belt[J]. Geology in China, 45(6): 1142-1154.

    [67]

    薛帅, 卢占武, 李文辉, 等, 2022. 青藏高原错那-沃卡裂谷中部电性结构及其动力学意义[J]. 地学前缘, 29(2): 393-401

    Xue S, Lu Z W, Li W H, et al. , 2022. Electrical resistivity structure beneath the central Cona Oiga rift, southern Tibet, and its implications for regional dynamics[J]. Earth Science Frontiers, 29(2): 393-401.

    [68]

    严宇鹏, 牛凤霞, 刘佳, 等, 2022. 雅鲁藏布江上游夏季水化学特征及来源解析[J]. 中国环境科学, 42(2): 815-825 doi: 10.19674/j.cnki.issn1000-6923.2022.0037

    Yan Y P, Niu F X, Liu J, et al. , 2022. Hydrochemical characteristics and sources of the upper Yarlung Zangbo River in summer[J]. China Environmental Science, 42(2): 815-825. doi: 10.19674/j.cnki.issn1000-6923.2022.0037

    [69]

    喻晓, 吕新彪, 曹华文, 2023. 藏南下侏罗统日当组地球化学和碎屑锆石 U−Pb 年代学特征及构造意义[J]. 沉积与特提斯地质, 1 − 18

    Yu X, Lv X B, Cao H W, 2023. Geochemistry and detrital zircon U−Pb geochronology of the Jurassic Ridang Formation in the southern Tibet and its tectonic implications[J]. Sedimentary Geology and Tethyan Geology, 1 − 18.

    [70]

    Yu J S, Zhang H B, Yu F J, et al, 1984. Oxygen and Hydrogen Isotopic Compositions of Meteoric Waters in the Eastern Part of Xizang[J]. Geochemistry, 3(2): 93-101. doi: 10.1007/BF03179285

    [71]

    赵平, 金建, 张海政, 等, 1998. 西藏羊八井地热田热水的化学组成[J]. 地质科学, 33(1): 62 − 73

    Zhao P, Jin J, Zhang H Z, et al. , 1998. Chemical composition of thermal water in the Yangbajin geothermal field, Tibet[J]. Scientia Geologica Sinica, 33(1): 62 − 73.

    [72]

    张涛, 蔡五田, 李颖智, 等, 2017. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 38(11): 4537-4545

    Zhang T, Cai W T, Li L Z, et al. , 2017. Major Ionic Features and Their Possible Controls in the Water of the Niyang River Basin[J]. Environmental Science, 38(11): 4537-4545.

    [73]

    张薇, 王贵玲, 赵佳怡, 等, 2021. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质, 35(1): 188-198

    Zhang W, Wang G L, Zhao J Y, et al. , 2021. Geochemical Characteristics of Medium-high Temperature Geothermal Fluids in West Sichuan and Their Geological Implications[J]. Geoscience, 35(1): 188-198.

    [74]

    Zhang X B, Hu Q H, 2018. Development of Geothermal Resources in China: A Review[J]. Journal of Earth Science, (2): 452-467.

    [75]

    赵佳怡, 张薇, 张汉雄, 等, 2019. 四川巴塘地热田水文地球化学特征及成因[J]. 水文地质工程地质, 46(4): 81-89 doi: 10.16030/j.cnki.issn.1000-3665.2019.04.11

    Zhao J Y, Zhang W, Zhang H X, et al. , 2019. Hydrogeochemical characteristics and genesis of the geothermal fields in Batang of Sichuan[J]. Hydrogeology & Engineering Geology, 46(4): 81-89. doi: 10.16030/j.cnki.issn.1000-3665.2019.04.11

    [76]

    Zheng X H, Duan C Y, Xia B, et al. , 2018. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet[J]. Journal of Earth Science, 30(4): 870-878.

    [77]

    Zhou R, Zhou X C, Li Y, et al. , 2022. Hydrogeochemical and Isotopic Characteristics of the Hot Springs in the Litang Fault Zone, Southeast Qinghai–Tibet Plateau[J]. Water, 14(9): 1496. doi: 10.3390/w14091496

    [78]

    蒙晖仁, 曹锐, 陈德凡, 等, 2023. 西藏古堆地热田水热蚀变类型、分布特征及对勘探方向的启示[J]. 地球学报, 44(1): 156-168.

    Meng H R, Cao R, Chen D F, et al., 2023. Types, Distribution Characteristics, and Exploration Direction of Hydrothermal Alteration in Gudui Geothermal Field, Tibet[J]. Acta Geoscientica Sinica, 44(1): 156-168.

    [79]

    吴中海, 张永双, 胡道功, 等, 2008. 西藏错那-拿日雍错地堑的第四纪正断层作用及其形成机制探讨[J]. 第四纪研究, 28(2): 232-242.

    Wu Z H, Zhang Y S, Hu D G, et al., 2008. Quaternary Normal Faulting and Its Dynamic Mechanism of the Cona-Nariyong Co Graben in South-Eastern Tibet[J]. Quaternary Sciences, 28(2): 232-242.

    [80]

    Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(346): 1702-1703.

  • 加载中

(11)

计量
  • 文章访问数:  1507
  • PDF下载数:  124
  • 施引文献:  0
出版历程
收稿日期:  2022-01-09
修回日期:  2023-03-07
录用日期:  2023-03-07
刊出日期:  2023-06-30

目录