梯烷脂在海洋厌氧氨氧化研究中的应用进展

曹亚俐, 赵宗山, 赵美训. 梯烷脂在海洋厌氧氨氧化研究中的应用进展[J]. 海洋地质与第四纪地质, 2013, 33(3): 159-169. doi: 10.3724/SP.J.1140.2013.03159
引用本文: 曹亚俐, 赵宗山, 赵美训. 梯烷脂在海洋厌氧氨氧化研究中的应用进展[J]. 海洋地质与第四纪地质, 2013, 33(3): 159-169. doi: 10.3724/SP.J.1140.2013.03159
CAO Yali, ZHAO Zongshan, ZHAO Meixun. THE APPLICATION PROGRESS OF LADDERANE LIPIDS AS BIOMARKERS ON THE STUDY OF MARINE ANAEROBIC AMMONIUM OXIDATION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 159-169. doi: 10.3724/SP.J.1140.2013.03159
Citation: CAO Yali, ZHAO Zongshan, ZHAO Meixun. THE APPLICATION PROGRESS OF LADDERANE LIPIDS AS BIOMARKERS ON THE STUDY OF MARINE ANAEROBIC AMMONIUM OXIDATION[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 159-169. doi: 10.3724/SP.J.1140.2013.03159

梯烷脂在海洋厌氧氨氧化研究中的应用进展

  • 基金项目:

    国家重点基础研究发展规划项目(2010CB428901);国家自然科学青年基金项目(21007062,41106038)

详细信息
    作者简介: 曹亚俐(1988-),女,硕士生,研究方向为海洋有机地球化学,E-mail:caoyali_163@163.com
    通讯作者: 赵宗山, zhaozongshan2011@yahoo.cn
  • 中图分类号: P736.4

THE APPLICATION PROGRESS OF LADDERANE LIPIDS AS BIOMARKERS ON THE STUDY OF MARINE ANAEROBIC AMMONIUM OXIDATION

More Information
  • 厌氧氨氧化反应是指NH4+在缺氧条件下被NO2-氧化释放N2的过程,发生在厌氧氨氧化菌的厌氧氨氧化体中,是海洋中N2的重要来源。梯烷脂是厌氧氨氧化菌特有的一种脂类,可以作为一种指示海洋环境中厌氧氨氧化活动的生物标志物。简单介绍了厌氧氨氧化过程的发现、厌氧氨氧化菌的分类和梯烷脂的结构与性质,并总结了影响梯烷脂含量与分布的因素。文中还对梯烷脂作为厌氧氨氧化菌生物标志物在氮循环研究中的应用做了简要介绍,并对梯烷脂在重建古环境中的厌氧氨氧化活动与氮循环过程及气候变化方面的应用进行了展望。
  • 加载中
  • [1]

    Gruber N. The Ocean Carbon Cycle and Climate[M]. Dordrecht, Netherlands:Kluwer Academic Publishers, 2004:97-148.

    [2]

    Postgate J R. Biological nitrogen fixation[J]. Nature, 1970, 226(5240):25-27.

    [3]

    Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115.

    [4]

    Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3):1312-1318.

    [5]

    Francis C A, Beman J M, Kuypers M M M. New processes and players in the nitrogen cycle:the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. ISME J, 2007, 1(1):19-27.

    [6]

    Hamm R E, Thompson T G. Dissolved nitrogen in the sea water of the Northeast Pacific with notes on the total carbon dioxide and the dissolved oxygen[J]. Journal of Marine Research, 1941, 4(2915):11-27.

    [7]

    Richards F A. Chemical Oceanography[M]. London:Academic Press, 1965:611-645.

    [8]

    Broda E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift für allgemeine Mikrobiologie, 1977, 17(6):491-493.

    [9]

    Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3):177-184.

    [10]

    van de Graaf A, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonium is a biologically mediated process[J]. Applied and Environmental Microbiology, 1995, 61(4):1246-1251.

    [11]

    Dalsgaard T, Canfield D E, Petersen J, et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 2003, 422(6932):606-608.

    [12]

    Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6932):608-611.

    [13]

    Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[C]//Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(18):6478-6483.

    [14]

    Hamersley M R, Lavik G, Woebken D, et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone[J]. Limnology and Oceanography, 2007, 52(3):923-933.

    [15]

    Trimmer M, Nicholls J C, Deflandre B. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom[J]. Applied and Environmental Microbiology, 2003, 69(11):6447-6454.

    [16]

    Rysgaard S, Glud R N. Anaerobic N2 production in Arctic sea ice[J]. Limnology and Oceanography, 2004, 49(1):86-94.

    [17]

    Engstr m P, Dalsgaard T, Hulth S, et al. Anaerobic ammonium oxidation by nitrite (anammox):Implications for N-2 production in coastal marine sediments[J]. Geochimica et Cosmochimica Acta, 2005, 69(8):2057-2065.

    [18]

    Schubert C J, Durisch-Kaiser E, Wehrli B, et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika)[J]. Environmental Microbiology, 2006, 8(10):1857-1863.

    [19]

    Penton C R, Devol A H, Tiedje J M. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments[J]. Applied and Environmental Microbiology, 2006, 72(10):6829-6832.

    [20]

    Hu B-l, Rush D, van der Biezen E, et al. New anaerobic, ammonium-oxidizing community enriched from peat soil[J]. Applied and Environmental Microbiology, 2011, 77(3):966-971.

    [21]

    Moore T, Xing Y, Lazenby B, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater[J]. Environmental Science & Technology, 2011, 45(17):7217-7225.

    [22]

    Jetten M S M, Strous M, van de Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1999, 22(5):421-437.

    [23]

    Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium oxidising bacteria[J]. ASM News, 2001, 67(9):456-463.

    [24]

    Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743):446-449.

    [25]

    Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1):39-49.

    [26]

    Schmid M C, Risgaard-Petersen N, Van De Vossenberg J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments:widespread occurrence but low diversity[J]. Environmental Microbiology, 2007, 9(6):1476-1484.

    [27]

    Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environmental Microbiology, 2008, 10(11):3130-3139.

    [28]

    Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5):589-596.

    [29]

    Kartal B, Kuypers M M M, Lavik G, et al. Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology, 2007, 9(3):635-642.

    [30]

    Woebken D, Fuchs B A, Kuypers M A A, et al. Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system[J]. Applied and Environmental Microbiology, 2007, 73(14):4648-4657.

    [31]

    Trimmer M, Nicholls J C. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic[J]. Limnology and Oceanography, 2009, 54(2):577-589.

    [32]

    Jaeschke A, Ziegler M, Hopmans E C, et al. Molecular fossil evidence for anaerobic ammonium oxidation in the Arabian Sea over the last glacial cycle[J]. Paleoceanography, 2009, 24(2):PA2202.

    [33]

    Jaeschke A, Abbas B, Zabel M, et al. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa[J]. Limnology and Oceanography, 2010, 55(1):365-376.

    [34]

    Brandsma J, van de Vossenberg J, Risgaard-Petersen N, et al. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden[J]. Environmental Microbiology Reports, 2011, 3(3):360-366.

    [35]

    Van de Graaf A A, De Bruin P, Robertson L, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7):2415-2421.

    [36]

    van Niftrik L, Geerts W J C, van Donselaar E G, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:Cell plan, glycogen storage, and localization of cytochrome proteins[J]. Journal of Bacteriology, 2008, 190(2):708-717.

    [37]

    Lindsay M R, Webb R I, Strous M, et al. Cell compartmentalisation in planctomycetes:Novel types of structural organisation for the bacterial cell[J]. Archives of Microbiology, 2001, 175(6):413-429.

    [38]

    van Niftrik L A, Fuerst J A, Damst J S S, et al. The anammoxosome:an intracytoplasmic compartment in anammox bacteria[J]. FEMS Microbiology Letters, 2004, 233(1):7-13.

    [39]

    Sinninghe Damst J S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J]. Nature, 2002, 419(6908):708-712.

    [40]

    Boumann H A, Longo M L, Stroeve P, et al. Biophysical properties of membrane lipids of anammox bacteria:I. Ladderane phospholipids form highly organized fluid membranes[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2009, 1788(7):1444-1451.

    [41]

    van Niftrik L, Geerts W J C, van Donselaar E G, et al. Combined structural and chemical analysis of the anammoxosome:A membrane-bounded intracytoplasmic compartment in anammox bacteria[J]. Journal of Structural Biology, 2008, 161(3):401-410.

    [42]

    Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMS Microbiology Letters, 2006, 258(2):297-304.

    [43]

    Rattray J, van de Vossenberg J, Hopmans E, et al. Ladderane lipid distribution in four genera of anammox bacteria[J]. Archives of Microbiology, 2008, 190(1):51-66.

    [44]

    Rattray J, Strous M, Op den Camp H, et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis[J]. Biology Direct, 2009, 4(1):8.

    [45]

    Rattray J E, Geenevasen J A J, Van Niftrik L, et al. Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway[J]. FEMS Microbiology Letters, 2009, 292(1):115-122.

    [46]

    Boumann H A, Stroeve P, Longo M L, et al. Biophysical properties of membrane lipids of anammox bacteria:Ⅱ. Impact of temperature and bacteriohopanoids[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2009, 1788(7):1452-1457.

    [47]

    Armstrong R A, Lee C, Hedges J I, et al. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 49(13):219-236.

    [48]

    Jaeschke A, Rooks C, Trimmer M, et al. Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):2077-2088.

    [49]

    Jaeschke A, Hopmans E C, Wakeham S G, et al. The presence of ladderane lipids in the oxygen minimum zone of the Arabian Sea indicates nitrogen loss through anammox[J]. Limnology and Oceanography, 2007, 52(2):780-786.

    [50]

    Aries E, Doumenq P, Artaud J, et al. Occurrence of fatty acids linked to non-phospholipid compounds in the polar fraction of a marine sedimentary extract from Carteau cove, France[J]. Organic Geochemistry, 2001, 32(1):193-197.

    [51]

    Sturt H F, Summons R E, Smith K, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry, 2004, 18(6):617-628.

    [52]

    Zink K G, Wilkes H, Disko U, et al. Intact phospholipids-microbial "life markers" in marine deep subsurface sediments[J]. Organic Geochemistry, 2003, 34(6):755-769.

    [53]

    Zink K G, Mangelsdorf K, Granina L, et al. Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids[J]. Analytical and Bioanalytical Chemistry, 2008, 390(3):885-896.

    [54]

    Mazzella N, Molinet J, Syakti A D, et al. Assessment of the effects of hydrocarbon contamination on the sedimentary bacterial communities and determination of the polar lipid fraction purity:Relevance of intact phospholipid analysis[J]. Marine Chemistry, 2007, 103(3-4):304-317.

    [55]

    Rtters H, Sass H, Cypionka H, et al. Microbial communities in a Wadden Sea sediment core-clues from analyses of intact glyceride lipids, and released fatty acids[J]. Organic Geochemistry, 2002, 33(7):803-816.

    [56]

    Lanekoff I, Karlsson R. Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8):3543-3551.

    [57]

    Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6):2446-2448.

    [58]

    Aller R C, Heilbrun C, Panzeca C, et al. Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon Guianas mobile mud belt:coastal French Guiana[J]. Marine Geology, 2004, 208(2-4):331-360.

    [59]

    Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and anammox activity in Arctic marine sediments[J]. Limnology and Oceanography, 2004, 49(5):1493-1502.

    [60]

    Risgaard-Petersen N, Meyer R L, Revsbech N P. Denitrification and anaerobic ammonium oxidation in sediments:effects of microphytobenthos and NO3-[J]. Aquatic Microbial Ecology, 2005, 40(1):67-76.

    [61]

    Trimmer M, Nicholls J C, Morley N, et al. Biphasic behavior of anammox regulated by nitrite and nitrate in an estuarine sediment[J]. Applied and Environmental Microbiology, 2005, 71(4):1923-1930.

    [62]

    Strous M, Kuenen J G, Jetten M S M. Key Physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7):3248-3250.

    [63]

    Dalsgaard T, Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(8):3802-3808.

    [64]

    Byrne N, Strous M, Crepeau V, et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents[J]. The ISME Journal, 2009, 3(1):117-123.

    [65]

    Jaeschke A, Op den Camp H J M, Harhangi H, et al. 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs[J]. FEMS Microbiology Ecology, 2009, 67(3):343-350.

    [66]

    Rattray J E, van de Vossenberg J, Jaeschke A, et al. Impact of temperature on ladderane lipid distribution in anammox bacteria[J]. Applied and Environmental Microbiology, 2010, 76(5):1596-1603.

    [67]

    Jaeschke A, Lewan M D, Hopmans E C, et al. Thermal stability of ladderane lipids as determined by hydrous pyrolysis[J]. Organic Geochemistry, 2008, 39(12):1735-1741.

    [68]

    Sinninghe Damst J S, Rijpstra W I C, Geenevasen J A J, et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J]. The FEBS Journal, 2005, 272(16):4270-4283.

    [69]

    Hopmans E C, Kienhuis M V M, Rattray J E, et al. Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2006, 20(14):2099-2103.

  • 加载中
计量
  • 文章访问数:  966
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2012-02-19
修回日期:  2012-04-26

目录