基于冰川平衡线高度变化的气候重建模型研究

崔航, 王杰. 基于冰川平衡线高度变化的气候重建模型研究[J]. 海洋地质与第四纪地质, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
引用本文: 崔航, 王杰. 基于冰川平衡线高度变化的气候重建模型研究[J]. 海洋地质与第四纪地质, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
CUI Hang, WANG Jie. MODELS FOR CLIMATIC RECONSTRUCTION UPON GLACIER EQUILIBRIUM-LINE ALTITUDE VARIATION[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017
Citation: CUI Hang, WANG Jie. MODELS FOR CLIMATIC RECONSTRUCTION UPON GLACIER EQUILIBRIUM-LINE ALTITUDE VARIATION[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 17-24. doi: 10.3724/SP.J.1140.2013.04017

基于冰川平衡线高度变化的气候重建模型研究

  • 基金项目:

    国家自然科学基金重大研究计划-重点支持项目(91125008)

    国家自然科学基金项目(41171063)

    中央高校基本科研业务费专项资金项目(LZUJBKY-2013-125)

详细信息
    作者简介: 崔航(1987-),男,硕士,主要从事第四纪冰川与地貌研究,E-mail:cuihang071987@gmail.com
  • 中图分类号: P532

MODELS FOR CLIMATIC RECONSTRUCTION UPON GLACIER EQUILIBRIUM-LINE ALTITUDE VARIATION

  • 冰川物质平衡线高度(equilibrium-line altitude,ELA)变化的研究是冰川学研究的重要内容,其变化情况将最终决定冰川的命运。与冰川的其他特征(如冰川长度、面积)相比,ELA的变化是气候变化最直接的反应,其变化量常被用于对比不同区域间的气候变化特征差异。基于冰川ELA变化的气候重建的统计学方法,如ELA处气温与降水关系模型、气温递减率模型(Lapse-rate model)和温度指数融化模型(Temperature index melt model),结构简单,能获得较好的模拟效果,但均未能从冰川变化的物理成因来研究影响ELA升降的气候因素,且在数据不足时理论也缺乏说服力;物理方法,如能量-物质平衡模型是基于影响冰川变化的能量因子来探讨ELA升降的机制,其参数较多、计算复杂,但精度较高。不同模型受其本身及冰川类型等因素的影响,适用性及精度差别较大。
  • 加载中
  • [1]

    谢自楚, 刘潮海. 冰川学导论[M]. 上海:科学普及出版社, 2010:116-124.[XIE Zichu, LIU Chaohai. Introduction of Glaciology[M]. Shanghai:Shanghai Popular Science Press, 2010:116

    -124.]

    [2]

    鞠远江, 刘耕年, 张晓咏, 等. 山地冰川物质平衡线与气候[J]. 地理科学进展, 2004, 23(3):43-49.

    [JU Yuanjang, LIU Gengnian, ZHANG Xiaoyong, et al. High mountain glaciers' ELA0 and climate[J]. Progress in Geography, 2004, 23(3):43-49.]

    [3]

    Ohmura A, Kaser P, Funk M. Climate at the equilibrium line of glaciers[J]. Journal of Glaciology, 1992, 38:397-411.

    [4]

    Hoinkes H C. Glacier variation and weather[J]. Journal of Glaciology, 1968, 7:3-18.

    [5]

    Kuhn M. Climate and glaicers[Z]. IAHS Publ., 1979:3-20.

    [6]

    张金华, 王晓军, 李军. 天山乌鲁木齐河源1号冰川物质平衡变化与气候相互关系的研究[J]. 冰川冻土, 1984, 6(4):25-36.

    [ZHANG Jinhua, WANG Xiaojun, LI Jun. Study on relationship between mass balance changes of Glacier No.1 at the headwater of Urumqi River, Tianshan and climate[J]. Journal of Glaciology and Geocryology, 1984, 6(4):25-36.]

    [7]

    张祥松, 孙作哲, 张金华, 等. 天山乌鲁木齐河源1号冰川的变化及其与气候变化的若干关系[J]. 冰川冻土, 1984, 6(4):1-12.

    [ZHANG Xiangsong, SUN Zuozhe, ZHANG Jinhua et al. Some relationships of the fluctuation of Glacier NO.1 with climatic change at the source of Urumqi River, Tianshan[J]. Journal of Glaciology and Geocryology, 1984, 6(4):1-12.]

    [8]

    白重瑗. 冰川与气候关系的研究[J]. 冰川冻土, 1989, 11(4):287-297.

    [BAI Chongyuan. A study of relationship between climate and mountain glaciers[J]. Journal of Glaciology and Geocryology, 1989, 11(4):287-297.]

    [9]

    张寅生, 姚檀栋, 蒲健辰. 我国大陆型山地冰川对气候变化的响应[J]. 冰川冻土, 1998, 20(1):3-8.

    [ZHANG Yinsheng, YAO Tandong, PU Jianchen. The response of continental-type glaciers to climate change in China[J]. Journal of Glaciology and Geocryology, 1998, 20(1):3-8.]

    [10]

    Pu J C, Yao T D, Yang M X, et al. Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau[J]. Hydrological Processes, 2008, 22:2953-2958.

    [11]

    张威, 闫玲, 崔之久, 等. 长白山现代理论雪线和古雪线高度[J]. 第四纪研究, 2008, 28(4):739-745.

    [ZHANG Wei, YAN Ling, CUI Zhijiu, et al. Present and Late Pleistocene equilibrium line altitudes in Changbai Shan, Northeast China[J]. Quaternary Sciences, 2008, 28(4):739-745.]

    [12]

    Bowerman N D, Clark D H. Holocene glaciations of the central Sierra Nevada, California[J]. Quaternary Science Reviews, 2011, 30:1067-1085.

    [13]

    Bendle J M, Glasser N F. Palaeoclimatic reconstruction from Lateglacial(Younger Dryas Chronozone) cirque glaciers in Snowdonia, North Wales[J]. Proceedings of the Geologists' Association, 2012, 123:130-145.

    [14]

    施雅风, 崔之久, 苏珍. 中国第四纪冰川与环境变化[M]. 河北:河北科学技术出版社, 2006:65-115.[SHI Yafeng, CUI Zhijiu, SU Zhen. The Quaternary Glaciations and Environmental Variations in China[M]. Hebei:Hebei Science and Technology Publishing House, 2006:65

    -115.]

    [15]

    赖祖铭, 黄茂桓. 我国冰川的模糊聚类分析[J]. 科学通报, 1988, 33(16):1250-1253.

    [LAI Zuming, HUANG Maohuan. Glacier in China with fuzzy clustering analysis[J]. Chinese Science Bulletin, 1988, 33(16):1250-1253.]

    [16]

    Zhou Shangzhe, Wang Jie, Xu Liubing et al. Glacial advances in southeastern Tibet during late Quaternary and their implications for climatic changes[J]. Quaternary International, 2010, 218:58-66.

    [17]

    施雅风, 黄茂桓, 任炳辉. 中国冰川概论[M]. 北京:科学出版社, 1988:11-28.[SHI Yafeng, HUANG Maohuan, REN Binghui. An Introduction to the Glaciers in China[M]. Beijing:Since Press, 1988:11

    -28.]

    [18]

    Ramage J M, Smith J A, Rodbell D T, et al. Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru[J]. Journal of Quaternary Science, 2005, 20:777-778.

    [19]

    Carr S, Coleman C. An improved technique for the reconstruction of former glacier mass-balance and dynamics[J]. Geomorphology, 2007, 92:76-90.

    [20]

    Seltzer G O. Climatic interpretation of Alpine snowline variations on Millennial time scales[J]. Quaternary Research, 1994, 41:154-159.

    [21]

    Porter S T. Present and past glaciations threshold in the Cascade Range, Washington, U.S.A.:topographic and climatic controls, and paleoclimatic implications[J]. Journal of Glaciology, 1977, 18:101-116.

    [22]

    Miller G H, de Vernal A. Will greenhouse warming lead to Northern Hemisphere ice-sheet growth?[J]. Nature, 1992, 355:244-246.

    [23]

    Gillespie A R, Burke R M, Komatsu G, et al. Late Pleistocene glaciers in Darhad Basin, northern Mongolia[J]. Quaternary Research, 2008, 69:169-187.

    [24]

    Braithwaite R J. On glacier energy balance, ablation, and air temperature[J]. Journal of Glaciology, 1981, 27:381-391.

    [25]

    Braithwaite R J, Konzelmann T, Marty C, et al. Errors in daily ablation measurements in northern Greenland, 1993-94, and their implications for glacier climate studies[J]. Journal of Glaciology, 1998, 44:583-588.

    [26]

    Braithwaite R J, Zhang Yu. Modelling changes in glacier mass balance that may occur as a result of climate changes[J]. Geografiska Annaler, 1999, 81:489-496.

    [27]

    刘时银, 丁永健, 王宁练, 等. 天山乌鲁木齐河源1号冰川物质平衡对气候变化的敏感性研究[J]. 冰川冻土, 1998, 20(1):9-13.

    [LIU Shiyin, DING Yongjian, WANG Ninglian, et al. Mass balance sensitivity to climate change of the Glacier No.1 at the Urumqi River Head, Tianshan Mts[J]. Journal of Glaciology and Geocryology, 1998, 20(1):9-13.]

    [28]

    Laumann T, Reeh N. Sensitivity to climate change of the mass balance of glaciers in southern Norway[J]. Journal of Glaciology, 1993, 39:656-665.

    [29]

    Braithwaite R J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling[J]. Journal of Glaciology, 1995, 41:153-160.

    [30]

    Heyman B M, Heyman J, Fickert T, et al. Paleo-climate of the central European uplands during the last glacial maximum based on glacier mass-balance modeling[J]. Quaternary Research, 2013, 79:49-54.

    [31]

    Peyron O, Guiot J, Cheddadi R, et al. Climatic reconstruction in Europe for 18000 yr B.P. pollen data[J]. Quaternary Research, 1998, 49:183-196.

    [32]

    Hock R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282:104-115.

    [33]

    张勇, 刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土, 2006, 28(1):101-107.

    [ZHANG Yong, LIU Shiyin. Progress of the application of Degree-day model to study glaciers and snow cover[J]. Journal of Glaciology and Geocryology, 2006, 28(1):101-107.]

    [34]

    Sato A, Takahashi S, Naruse R, et al. Abaltion and heat balance of the Yukikabe Snow Patch in the Daisetsu Mountains, Hokkaido, Japan[J]. Annals of Glaciology, 1984, 5:122-126.

    [35]

    Ohmura A. Physical basis for the temperature-based melt-index method[J]. Journal of Applied Meteorology, 2001, 40:753-761.

    [36]

    卿文武, 陈仁升, 刘时银. 冰川水文模型研究进展[J]. 水科学进展, 19(6):893-902.[QING Wenwu, CHEN Rensheng, LIU Shiyin. Progress in study of glacier hydrological model[J]. Advances in Water Science, 19

    (6):893-902.]

    [37]

    Kayastha R B, Ohata T, Ageta Y. Application of a mass-balance model to a Himalayan glacier[J]. Journal of Glaciology, 1999, 45:559-567.

    [38]

    Molg T, Hardy D R. Ablation and associate energy balance of a horizontal glacier surface on Kilimanjaro[J]. Journal of Geophysical Research, 2004, 109:1-13.

    [39]

    Zhang Yinsheng, Koji F, Ageta Y, et al. The response of glacier ELA to climate fluctuations on High-Asia[J]. Bulletin of Glacier Research, 1998, 16:1-11.

    [40]

    Rupper S, Roe G. Glacier changes and regional climate:a mass and energy balance approach[J]. Journal of Climate, 2008, 21:5384-5401.

    [41]

    Rupper S, Roe G, Gillespie A. Spatial patterns of Holocene glacier advance and retreat in Central Asia[J]. Quaternary Research, 2009, 72:337-346.

    [42]

    施雅风, 黄茂桓, 姚檀栋, 等. 中国现代冰川与环境-现在、过去和未来[M]. 北京:科学出版社, 2000:79-100.[SHI Yafeng, HUANG Maohuan, YAO Tandong, et al. Glaciers and Their Environments in China-the Present, Past and Future[M]. Beijing:Science Press, 2000:79

    -100.]

    [43]

    Kane D L, Gieck M ASCE R E, Hinzman L D. Snowmelt modeling at small Alaskan Arctic watershed[J]. Journary of Hydrologic Engineering, 1997, 2:204-210.

    [44]

    Kaser G, Osmaston H A. Tropical Glaciers[M]. Cambridge:Cambridge University Press, 2002:149-192.

    [45]

    Paterson W S B. The Physics of Glaciers (3rd Edition)[M]. Oxford, UK:Pergarnon Press, 1994:53-77.

    [46]

    Braithwaite R J, Olesen O L. Response of the energy balance on the margin of the Greenland ice sheet to temperature changes[J]. Journal of Glaciology, 1990, 36:217-221.

    [47]

    Ambach W. Climatic shift of the equilibrium line concept applied to the Greenland ice cap[J]. Annals of Glaciology, 1985, 6:76-78.

    [48]

    Berger A L. Long-term variations of caloric insolation resulting from the Earth's orbital elements[J]. Quaternary Research, 1978, 9:139-167.

    [49]

    Hastenrath S L. On the Pleistocene snow-line depression in the arid regions of the south American Andes[J]. Journal of Glaciology, 1971, 10:255-267.

    [50]

    Leonard E M. Climatic change in the Colorado Rocky Mountains:estimates based on modern climate at Late Pleistocene equilibrium lines[J]. Arctic and Alpine Research, 1989, 21:245-255.

    [51]

    张寅生, 姚檀栋, 蒲健辰. 我国大陆型冰川消融特征分析[J]. 冰川冻土, 1996, 18(2):147-154.

    [ZHANG Yinsheng, YAO Tandong, PU Jianchen. The characteristics of ablation on continental-type glaciers in china[J]. Journal of Glaciology and Geocryology, 1996, 18(2):147-154.]

  • 加载中
计量
  • 文章访问数:  1190
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2013-06-05
修回日期:  2013-07-12

目录