现代海底热液硫化物矿体微生物风化的几个重要研究方向

孙治雷, 窦振亚, 黄威, 崔汝勇, 黄鑫, 何拥军. 现代海底热液硫化物矿体微生物风化的几个重要研究方向[J]. 海洋地质与第四纪地质, 2014, 34(1): 65-74. doi: 10.3724/SP.J.1140.2014.01065
引用本文: 孙治雷, 窦振亚, 黄威, 崔汝勇, 黄鑫, 何拥军. 现代海底热液硫化物矿体微生物风化的几个重要研究方向[J]. 海洋地质与第四纪地质, 2014, 34(1): 65-74. doi: 10.3724/SP.J.1140.2014.01065
SUN Zhilei, DOU Zhenya, HUANG Wei, CUI Ruyong, HUANG Xin, HE Yongjun. KEY ISSUES FOR MICROBIAL WEATHERING STUDY IN MODERN SUBMARINE HYDROTHERMAL SULFIDES[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 65-74. doi: 10.3724/SP.J.1140.2014.01065
Citation: SUN Zhilei, DOU Zhenya, HUANG Wei, CUI Ruyong, HUANG Xin, HE Yongjun. KEY ISSUES FOR MICROBIAL WEATHERING STUDY IN MODERN SUBMARINE HYDROTHERMAL SULFIDES[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 65-74. doi: 10.3724/SP.J.1140.2014.01065

现代海底热液硫化物矿体微生物风化的几个重要研究方向

  • 基金项目:

    国家重点基础发展研究规划项目(SQ2012CB047103);中国科学院海洋地质与环境重点实验室开放实验室基金项目(MGE2012KG06);地质大调查项目(1212010811049)

详细信息
    作者简介: 孙治雷(1975-),男,博士,助理研究员,主要从事与深海环境有关的微生物成矿与地球化学研究,E-mail:zhileisun@yeah.net
  • 中图分类号: P744

KEY ISSUES FOR MICROBIAL WEATHERING STUDY IN MODERN SUBMARINE HYDROTHERMAL SULFIDES

  • 与现代海底热液系统所伴生的金属硫化矿床是人类未来矿产资源的可靠储备。热液硫化物矿体形成后,在相对漫长的后期改造过程中,金属硫化物成为深海微生物群落可靠而稳定的能量来源,并遭受着微生物的风化蚀变作用。而这种微生物与矿物之间的相互作用,已经逐渐成为目前地球科学与生命科学交叉研究的重要方向之一。简述了现代海底硫化物堆积体的微生物风化过程研究现状,从当前现存待解决的问题出发,展望了未来几个重要的研究方向:包括矿体尺度上微生物因素对风化作用的贡献程度及矿物蚀变次序、细胞尺度上的微观成矿机理、氧化蚀变过程中元素迁移富集及同位素分馏规律,以及涉及到蚀变作用中的微生物种属与有机生物标志物的特征等几个方面,以期加深人们对深海热液环境中微生物与矿物相互作用的理解,同时,为陆地环境中类似矿体的演化规律的研究提供现代视角上的有益思考。
  • 加载中
  • [1]

    Hannington M, Jamieson J, Monec T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2010, 39:1155-1158.

    [2]

    [3]

    Hannington M D, Barrie C T, Bleeker W. The giant Kidd Creek volcanogenic massive sulfide deposit, Western Abitibi subprovince, Canada[C]//The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada. Economic Geology, Monograph 10, Preface and introduction, 1999, 1-28.

    [4]

    Rona P A. The changing vision of marine minerals[J]. Ore Geology Reviews, 2008, 33:618-666.

    [5]

    Rona P A. Large Seafloor Volcanic-hosted Massive Sulfide Deposits:Discovered and Undiscovered[C]//Deep-Sea Mining of Seafloor Massive Sulfides:A Reality for Science and Society in the 21st Century Science and Policy. Workshop April 12, 2009 Woods Hole, Massachusetts, USA, abstract.

    [6]

    Edwards K J. Formation and degradation of seafloor hydrothermal sulfide deposits[C]//Sulfur Biogeochemistry-Past and Present. Geological Society of America Special Paper,2004, 379:83-96.

    [7]

    Jannasch H W. The chemosynthetic support of life and microbial diversity at deep-sea hydrothermal vents[J]. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1985, 225:277-297.

    [8]

    Karl D. Ecology of free-living, hydrothermal vent microbial communities[C]//The microbiology of deep-sea hydrothermal vents. Boca Raton, CRC Press, 1995:35-124.

    [9]

    Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal site[J]. Canadian Mineralogist, 1988, 26:859-869.

    [10]

    Eberhard C, Wirsen C O, Jannasch H W. Oxidation of polymetal sulfides by chemolithoautotrophic bacteria from deep-sea hydrothermal vents[J]. Geomicrobiology Journal, 1995, 13:145-164.

    [11]

    Metz S, Trefry J H, Nelson J A. History and Geochemistry of a metalliferous sediment core from the Mid-Atlantic Ridge at 26 N[J]. Geochimica et Cosmochimica Acta, 1988, 52:2369-2378.

    [12]

    Glynn S, Mills R A, Palmer M R, et al. The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides[J]. Earth and Planetary Science Letters, 2006, 244:170-185.

    [13]

    Severmann S, Mills R A, Palmer M R, et al. The role of prokaryotes in subsurface weathering of hydrothermal sediments:A combined geochemical and microbiological investigation[J]. Geochimica et Cosmochimica Acta, 2006, 70:1677-1694.

    [14]

    Humphris S E, Herzig P M, Miller D J, et al. The internal structure of an active sea-floor massive sulphide deposit[J]. Nature, 1995, 377:713-716.

    [15]

    Lalou C, Reyss J L, Brichet E, et al. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26 N[J]. Journal of Geophysical Research, 1995, 100:17855-17862.

    [16]

    Rona P A, Bogdanov Y A, Gurvich E G, et al. Relict hydrothermal zones in the TAG hydrothermal field, Mid-Atlantic ridge 26 N, 45 W[J]. Journal of Geophysical Research, 1993, 98:9715-9730.

    [17]

    Rona P A, Fujioka K, Ishihara T, et al. An active low-temperature hydrothermal mound and a large inactive sulfide mound found in the TAG hydrothermal field, Mid-Atlantic Ridge 26N, 45W[J]. EOS Trans. AGU, 1998, 79:F920.

    [18]

    White S N, Humphris S E, Kleinrock M C. New observations on the distribution of past and present hydrothermal activity in the TAG area of the Mid-Atlantic Ridge (2608'N)[J]. Marine Geophysical Researches, 1998, 20:41-56.

    [19]

    Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals:Results from in situ incubation studies[J]. Geochimica et Cosmochimica Acta, 2003, 67:2843-2856.

    [20]

    Andrews G R. The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces[J]. Biotechnology and Bioengineering, 1988, 31:378-381.

    [21]

    Konhauser K O. Introduction to Geomicrobiology[M]. Blackwell Publishing Company, 2011:192-234.

    [22]

    Verati C, de Donato P, Prieur D, et al. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate)[J]. Chemical Geology, 1999, 158:257-269.

    [23]

    Lawrence J R, Kwong Y T J, Swerhone G D W. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans[J]. Canadian Journal of Microbiology, 1997, 43:178-188.

    [24]

    Chan C S, Fakra S C, Emerson D, et al. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth:implications for biosignature formation[J]. The ISME Journal, 2011, 5(4):717-727.

    [25]

    Suzuki T, Hashimoto H, Matsumoto N, et al. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks[J]. Applied Environmental Microbiology, 2011, 77:2877-2881.

    [26]

    Suzuki T, Hashimoto H, Itadani A, Matsumoto N, et al. Silicon and phosphorus linkage with iron via oxygen in the amorphous matrix of Gallionella ferruginea stalks[J]. Applied Environmental Microbiology, 2012, 78:236-241.

    [27]

    Staudigel H, Furnes H, McLoughlin N, et al. 3.5 billion years of glass bioalteration:Volcanic rocks as a basis for microbial life?[J]. Earth-Science Reviews, 2008, 89:156-176.

    [28]

    Cockell C S, van Calsteren P, Mosselmans J F W, et al. Microbial endolithic colonization and the geochemical environment in young seafloor basalts[J]. Chemical Geology, 2010, 279:17-30.

    [29]

    Foriel J, Philippot P, Susini J, et al. High-resolution imaging of sulfur oxidation states, trace elements, and organic molecules distribution in individual microfossils and contemporary microbial filaments[J]. Geochimica et Cosmochimica Acta, 2004, 68:1561-1569.

    [30]

    Zierenberg R A, Schiffman P. Microbial control of silver mineralization at a sea-floor hydrothermal site on the northern Gorda Ridge[J]. Nature, 1990, 348:155-157.

    [31]

    Herzig P M, Hannington M D, Scott S D, et al. Gold-rich seafloor gossans in the Troodos ophiolite and on the Mid-Atlantic Ridge[J]. Economic Geology, 1991, 86:1747-1755.

    [32]

    Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data[J]. Journal of Geophysical Research, 1995, 100:12427-12555.

    [33]

    Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in~3.4 billion-year-old sediments[J]. Earth and Planetary Science Letters, 2011, 301:393-402.

    [34]

    Lengke M, Southam G. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex[J]. Geochimica et Cosmochimica Acta, 2004, 69:3759-3772.

    [35]

    Reith F, Etschmann B, Grosse C, et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:17757-17762.

    [36]

    Reith F, Fairbrother L, Nolze G, et al. Nanoparticle factories:Biofilms hold the key to gold dispersion and nugget formation[J]. Geology, 2010, 38:843-846.

    [37]

    Reith F, Stewart L, Wakelin S A. Supergene gold transformation:Secondary and nano-particulate gold from southern New Zealand[J]. Chemical Geology, 2012, 320321:32-45.

    [38]

    Fitz R M, Cypionka H. Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans[J]. Archives of Microbiology, 1990, 154:400-406.

    [39]

    Lengke M F, Southam G. The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex[J]. Geochimica et Cosmochimica Acta, 2005, 69:3759-3772.

    [40]

    Lengke M F, Southam G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex[J]. Geochimica et Cosmochimica Acta, 2006, 70:3646-3661.

    [41]

    Lengke M F, Southam G. The deposition of elemental gold from gold(I)-thiosulfate complex mediated by sulfate-reducing bacterial conditions[J]. Economic Geology, 2007, 102:109-126.

    [42]

    Herzig P M, Hannington M D. Polymetallic massive sulfides at the modem seafloor:A review[J]. Ore Geology Reviews, 1995, 10:95-115

    [43]

    Wirsen C O, Jannasch H W, Molyneaux S J. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites[J]. Journal of Geophysical Research, 1993, 98:9693-9703.

    [44]

    Polz M F, Robinson J J, Cavanaugh C M, et al. Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site[J]. Limnology and Oceanography, 1998, 43:1631-1638.

    [45]

    Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J]. Applied and environmental microbiology, 2002, 68:3085-3093.

    [46]

    Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J]. Geomicrobiology Journal, 2003, 20:199-214.

    [47]

    Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews, 2005, 72:1-19.

    [48]

    Langley S, Igric P, Takahashi Y, et al. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean[J]. Geobiology, 2009, 7:35-49.

    [49]

    Peng X, Chen S, Zhou H, et al. Diversity of biogenic minerals in low-temperature Si-rich deposits from a newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge[J]. Journal of Geophysical Research, 2011, 116:G03030, doi:10.1029/2011JG001691.

    [50]

    Sun Z, Zhou H, Glasby G P, et al. Formations of Fe-Mn-Si oxide and nontronite deposits:example from hydrothermal fields on the Valu Fa Ridge, Lau Basin[J]. Journal of Asian Earth Sciences, 2012, 43:64-76.

    [51]

    Toner B M, Santelli C M, Marcus M A, et al. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents:Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 2009, 73:388-403.

  • 加载中
计量
  • 文章访问数:  1221
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2012-08-06
修回日期:  2012-09-11

目录