超大陆与全球板块重建派别

李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛. 超大陆与全球板块重建派别[J]. 海洋地质与第四纪地质, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097
引用本文: 李三忠, 余珊, 赵淑娟, 张国伟, 刘鑫, 曹花花, 许立青, 戴黎明, 李涛. 超大陆与全球板块重建派别[J]. 海洋地质与第四纪地质, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097
LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097
Citation: LI Sanzhong, YU Shan, ZHAO Shujuan, ZHANG Guowei, LIU Xin, CAO Huahua, XU Liqing, DAI Liming, LI Tao. SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 97-117. doi: 10.3724/SP.J.1140.2014.06097

超大陆与全球板块重建派别

  • 基金项目:

    国家自然科学基金重大项目(41190072,41190070);国家杰出青年基金项目(41325009)

详细信息
    作者简介: 李三忠(1968-),男,博士,教授,博导,从事构造地质学及海洋地质学的教学和研究工作,E-mail:sanzhong@ouc.edu.cn
  • 中图分类号: P731

SCHOOLS OF THOUGHT ON SUPERCONTINENT AND GLOBAL PLATE RECONSTRUCTION

  • 板块重建是全球构造研究的核心和前沿,而且该研究自Wegener开始就以多学科集成综合为特征,随着21世纪进入大数据时代,其多学科交叉协同创新特色更为鲜明。但当前板块重建各派依然发挥各自特长,在板块重建领域,显示出其某方面的积累和特色,总体可分成14大派别:(1)最早利用计算机从事板块重建的Scotese群体;(2)仅依据古地磁极移为依据进行重建的Piper群体;(3)以Golonka为首的群体侧重岩相古地理、古环境相结合的板块重建;(4)重点对东南亚和西太平洋地区中生代-新生代进行板块重建的Robert Hall群体;(5)发展了板块和地质重建程序的Lawrence Lawver群体;(6)以古生物地理和古气候为特色的陈旭群体;(7)以海底磁条带和古水深重建为特色的Müller群体;(8)以古地貌、动力地形和沉积岩相重建为特色的Blakey群体;(9)以古地磁条带和蛇绿岩对比为特色的Stampfli群体;(10)以古地磁极移和地质综合对比为特色的LI Zhengxiang群体;(11)以与深部地球物理(层析成像)相结合为特色的Torsvik群体;(12)以碎屑锆石年龄谱对比为特色的Cawood群体;(13)以变质动力学和碰撞造山带事件对比为特色的Zhao Guochun群体;(14)打破刚性板块理念,开启可变形板块和动力地形重建的Michael Gurnis群体。各家在重建板块的时代上也有所侧重,从20世纪初Wegener提出2.5亿年左右的Pangea重建开始,到20世纪90年代初10亿年左右的Rodinia超大陆重建,再到20世纪90年代末Zhao Guochun和Rogers古元古代18亿年的Columbia超大陆重建。
  • 加载中
  • [1]

    Nance R D, Murphy J B, Santosh M. The supercontinent cycle:A retrospective essay[J]. Gondwana Research, 2014, 25:4-29.

    [2]

    Rogers J J W, Santosh M. Supercontinents in Earth History[J]. Gondwana Research, 2003, 6(3):357-368.

    [3]

    Zegers T E, de Wit M J, Dann J, et al. Vaalbara, Earth's oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test[J]. Terra Nova, 1998, 10(5):250-259.

    [4]

    Williams H, Hoffman P E, Lewry J F, et al. Anatomy of North America:thematic portrayals of the continent[J]. Tectonophyscis, 1991, 187:117-134.

    [5]

    Condie K C. Earth as an evolving planetary system (second edition)[C]//Academic Press, the Netherlands, 2011.

    [6]

    Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens:implications for a Pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59:125-162.

    [7]

    Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5:5-22.

    [8]

    Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67:91-123.

    [9]

    Pesonen L J, Salminen J, Donadini F, et al. Paleomagnetic configuration of continents during the Proterozoic[J]. Tectonophysics, 2003, 375:289-324.

    [10]

    Franklin B S, Manoel D S, Pacca Igor I G, et al. Columbia revisited:Paleomagnetic results from the 1790 Ma colider volcanics (SW Amazonian Craton, Brazil)[J]. Precambrian Research, 2008, 164(1):40-49.

    [11]

    Dewey J F, Burke K C. Tibetian, Variscan, and Precambrian basement reactivation:products of continental collision[J]. Journal of Geology, 1973, 81(6):683-692.

    [12]

    Bogdanova S V, Pisarevsky S A, Li Z X. Assembly and breakup of Rodinia (some results of IGCP Project 440)[J]. Stratigraphy and Geological Correlation, 2009, 17(3):259-274.

    [13]

    McMenamin M A S, McMenamin D L. The emergence of animals:the Cambrian break though[M]. Columbia University Press, 1990, ISBN 0-231-06647-3.

    [14]

    Dalziel I W D. Overview:Neoproterozoic-Paleozoic geography and tectonics:review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 109(1):16-42.

    [15]

    Goodge J W, Vervoort J D, Fanning C M, et al. A positive test of East Antarctica-Laurentia juxtaposition within the Rodinia supercontinent[J]. Science, 2008, 321(5886):235-240.

    [16]

    Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia And Laurentia:No SWEAT, No AUSWUS?[J]. Terra Nova, 2002, 14(2):121-128.

    [17]

    Pisarevsky S A, Murphy J B, Cawood P A, et al. Late Neoproterozoic and Early Cambrian palaeogeography:models and problems[M]. Geological Society of London, Special Publications, 2008, 294:9-31.

    [18]

    Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.

    [19]

    Sears J W, Price R A. New look at the Siberian connection:No SWEAT[J]. Geology, 2000, 28(5):423-426.

    [20]

    Scotese C R. More information about the late Precambrian[R]. Paleomap Project. Retrieved, 2006.

    [21]

    Weil A B, Van der Voo R, Mac Niocaill C, et al. The Proterozoic supercontinent Rodinia:paleomagnetically derived reconstructions for 1100 to 800 Ma[J]. Earth and Planetary Science Letters, 1998,154:13-24.

    [22]

    Piper J D A. Paleopangea in Meso-Neoproterozoic times:The paleomagnetic evidence and implications to continental integrity, supercontinent from and Eocambrian break-up[J]. Journal of Geodynamics, 2010, 50:191-223.

    [23]

    Torsvik T H, Gaina C, Redfield T F. Antarctica and global paleogeography:From Rodinia, Through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways[C]//In:Cooper A K, Barrett P J, Stagg H, et al. Antarctica:A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington D C, The National Academies Press, 2008:125-140.

    [24]

    Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013, 589:44-56.

    [25]

    Donnadieu Y, Oddéris Y, Ramstein G, et al. A "snowball Earth" climate triggered by continental break-up through changes in runoff[J]. Nature, 2004, 428(6980):303-306.

    [26]

    Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics:Review, hypothesis, environmental speculation[J]. Geological Society of America Bulletin, 1997, 109(1):16-42.

    [27]

    Stern R J. Arc assembly and continental collision in the Neoproterozoic East Africa Orogen:implications for the consolidation of Gondwanaland[J]. Annual Reviews of Earth and Planetary Sciences, 1994, 33:319-351.

    [28]

    Evans D A D. Reconstructing pre-Pangean supercontinents. GSA Bulletin[J]. 125(11/12):1735-1751.

    [29]

    Condie K C. Plate Tectonics and Crustal Evolution[M]. Pergamon Press, 1989.

    [30]

    Arlo B, Weil R, Van der Voo B A, et al. Oroclinal bending and evidence against the Pangea megashear:The Cantabria-Asturias arc (northern Spain)[J]. Geology, 2001, 29(11):991-994.

    [31]

    Benton M J. Vertebrate Palaeontology[M]. Third edition, Oxford, 2005:25.

    [32]

    Barbara W, Murck Brian J Skinner. Geology Today:Understanding Our Planet, Study Guide[M]. Wiley, 1999. ISBN 978-0-471-32323-5.

    [33]

    Kearey P, Klepeis K A, Vine F J. Global Tectonics[M]. Third edition, Chichester:Wiley, 2009:66-67. ISBN 978-1-4051-0777-8.

    [34]

    Merali Z, Skinner B J. Visualizing Earth Science[M]. Wiley, 2008. ISBN 978-0-470-41847-5.

    [35]

    Williams C, Nield T. Pangaea, the comeback[J]. New Scientist, 2007:36-40.

    [36]

    Bowdler N. America and Eurasia "to meet at north pole"[N]. BBC News, 2012-02-08.

    [37]

    Smith K. Supercontinent Amasia to take North Pole Position[N]. Nature News, 2012-02-08.

    [38]

    Nance R D, Worsley T R, Moody J B. The supercontinent cycle[J]. Scientific American, 1988, 259(1):72-79.

    [39]

    Scotese C R, Baker C W. Continental drift reconstructions and animation[J]. J. Geol. Educ., 1975, 23:167-171.

    [40]

    Ziegler P A, Cloetingh S, Guiraud R, et al. Peri-Tethyan Platforms:constraints on dynamics of rifting and basin inversion[J]. Mémoire du Museum National d'Histoire Naturelle, 2001a,186:9-49.

    [41]

    Ziegler P A, Stampfli G M. Late Paleozoic Early Mesozoic plate boundary reorganisation:collapse of the Variscan orogen and opening of Neotethys[J]. Annali Museo Civico Scienze Naturali, 2001b, Brescia 25:17-34.

    [42]

    Golonka J, Ross M I, Scotese C R. Phanerozoic paleogeographic and paleoclimatic modeling maps[C]//In:Embry A F, Beauchamp B, Glass D J (eds). PANGEA:Global Environments and Resources. Can. Soc. Petrol. Geol., 1994, Memoir 17:1-48.

    [43]

    Scotese C R. A continental drift "flip book"[J]. Computers and Geology, 1976, 2:113-116.

    [44]

    Scotese C R. Late Proterozoic plate tectonics and palaeogeography:a tale of two supercontinents, Rodinia and Pannotia[M]. London, Geological Society, Special Publications, 2009, 326:67-83.

    [45]

    Scotese C R, Sager W W. Mesozoic and Cenozoic Plate Tectonic Reconstructions[J]. Tectonophysics, 1988, 155:27-48.

    [46]

    Gahagan L M, Scotese C R, Royer J Y, et al. Tectonic fabric of the ocean basins from satellite altimetry data[C]//In:Scotese C R, Sager W W (eds). Mesozoic and Cenozoic plate reconstructions. Tectonophysics, 1988, 155:1-26.

    [47]

    Jurdy D M, Stefanick M, Scotese C R. Paleozoic plate dynamics[J]. J. Geophys. Res., 1995,100:17965-17975.

    [48]

    Piper J D A. A planetary perspective on Earth evolution:Lid Tectonics before Plate Tectonics[J]. Tectonophysics, 2013a, 589:44-56.

    [49]

    Piper J D A. Consolidation of continental crust in late Archaean-early Proterozoic times:A palaeomagnetic test[J]. Gondwana Research, 2003, 6(3):435-448.

    [50]

    Piper J D A. The Neoproterozoic Supercontinent:Rodinia or Palaeopangaea?[J]. Earth Planet Sci. Lett., 2000, 176:131-146.

    [51]

    Piper J D A. The Neoproterozoic supercontinent Palaeopangaea[J]. Gondwana Research, 2007a, 12:202-227.

    [52]

    Piper J D A. Protopangaea:Palaeomagnetic definition of Earth's oldest (mid-Archaean-Palaeoproterozoic) supercontinent[J]. Journal of Geodynamics, 2010a, 50:154-165.

    [53]

    Piper J D A. Palaeopangaea in Meso-Neoproterozoic times:The palaeomagnetic evidence and implications to continental integrity, supercontinent form and Eocambrian break-up[J]. Journal of Geodynamics, 2010b, 50:191-123.

    [54]

    Piper J D A, Zhang J S, Huang B C, et al. Palaeomagnetism of Precambrian dyke swarms in the North China Shield:The~1.8 Ga LIP event and crustal consolidation in late Palaeoproterozoic times[J]. Journal of Asian Earth Sciences, 2011a, 41:504-524.

    [55]

    Piper J D A. SWEAT and the end of SWEAT:The Laurentia-Siberia configuration during Meso-Neoproterozoic times[J]. International Geology Review, 2011b, 53(12):1265-1279.

    [56]

    Piper J D A. Palaeomagnetism of the Loch Doon Granite Complex, Southern Uplands of Scotland:The Late Caledonian palaeomagnetic record and an Early Devonian episode of True Polar Wander[J]. Tectonophysics, 2007b, 432:133-157.

    [57]

    Piper J D A. A~90(Late Silurian-Early Devonian apparent polar wander loop:The latest inertial interchange of planet earth?[J]. Earth and Planetary Science Letters, 2006, 250:345-357.

    [58]

    Huang B C, Piper J D A, Zhang C, et al. Palaeomagnetism of Cretaceous rocks in the Jiaodong Peninsula, eastern China:Insights into block rotations and Neotectonic deformation in eastern Asia[J]. Journal of Geophysical Research, 2007, 112(B03106):1-21.

    [59]

    Hall R. Tectonic Evolution of SE Asia[C]//Hall R, Blundell D J (eds.).Geological Society of London Special Publication, 1996, 106:153-184.

    [60]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20:353-434.

    [61]

    Hall R. Australia-SE Asia collision:plate tectonics and crustal flow[C]//In:Hall R, Cottam M A, Wilson M E J (eds.). The SE Asian gateway:history and tectonics of Australia-Asia collision. Geological Society of London Special Publication, 2011:75-109.

    [62]

    Hall R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41.

    [63]

    Hall R, Ali J R, Anderson C D. Cenozoic motion of the Philippine Sea Plate:palaeomagnetic evidence from eastern Indonesia[J]. Tectonics, 1995a, 14(5):1117-1132.

    [64]

    Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995b, 251(1-4):229-250.

    [65]

    Hall R, Morley C K. Continent-Ocean Interactions within the East Asian Marginal Seas[C]//Clift P, Wang P, Kuhnt W H (eds.). Washington D C:American Geophysical Union, Geophysical Monograph, 2004, 149:55-85.

    [66]

    Van Hattum M W A, Hall R, Pickard A L, et al. Southeast Asian sediments not from Asia:Provenance and geochronology of north Borneo sandstones[J]. Geology, 2006, 34(7):589-592.

    [67]

    Renema W, Bellwood D R, Braga J C, et al. Hopping hotspots:Global shifts in marine biodiversity[J]. Science, 2008, 321(5889):654-657.

    [68]

    Dalziel I W D, Dalla Salda L H, Gahagan L M. Paleozoic Laurentia-Gondwana interaction and the origin of the Appalachian Andean mountain system[J]. Geological Society of American Bulletin, 1994, 106:243-252.

    [69]

    Dalziel I W D, Dalla Salda L H, Torsvik T H, et al. Ordovician palaeogeography of Siberia and adjacent continents[J]. Journal of the Geological Society, 1996, 153(Part 2):329-330.

    [70]

    Dalziel I W D, Lawver L A, Murphy J B. Plumes, orogenesis, and supercontinental fragmentation[J]. Earth and Planetary Science Letters, 2000a, 178(1-2):1-11.

    [71]

    Dalziel I W D, Mosher S, Gahagan L M. Laurentia-Kalahari collision and the assembly of Rodinia[J]. Journal of Geology, 2000b,108:499-513.

    [72]

    Dalziel I W D, Lawver L A, Norton I O, et al. The Scotia Arc:Genesis, evolution, global significance[J]. Annual Review of Earth and Planetary Sciences, 2013, 41:767-793.

    [73]

    Dalziel I W D. Antarctica:A tale of two supercontinents?[J]. Annual Review of Earth and Planetary Sciences, 1992, 20:501-526.

    [74]

    Dalziel I W D. Precambrian Scotland as a Laurentia-Gondwana Link-Origin and Significance of Cratonic Promontories[J]. Geology, 1994, 22:589-592.

    [75]

    Dalziel I W D. A global perspective on the Scottish Caledonides[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2000, 91:405-420.

    [76]

    Dalziel I D, Soper N J. Neoproterozoic extension on the Scottish promontory of Laurentia:Paleogeograhic and tectonic implications[J]. Journal of Geology, 2001, 109:299-317.

    [77]

    Dalziel I W D, Astini R A. Early Paleozoic paleogeography of Laurentia and western Gondwana:Evidence from tectonic subsidence analysis:Comment[J]. Geology, 1998, 26(6):575-576.

    [78]

    Scheibner E, Moore G W, Drummond K J, et al. Tectonic map of the circum-Pacific region, Pacific basin sheet, U.S. Geological Survey Circum-Pacific Map CP-52[C]. 2013, pamphlet 134 p., 2 sheets, scale 1:17,000,000, and GIS data.

    [79]

    Coffin M F, Eldholm O. Scratching the surface:Estimating dimensions of large igneous provinces[J]. Geology, 1993, 21:515-518.

    [80]

    Coffin M F, Eldholm O. Large Igneous Provinces:crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1):1-36.

    [81]

    Coffin M F, Eldholm O. Large igneous provinces[C]//In Steele J H, Thorpe S A, Turekian K K (eds.). Encyclopedia of Ocean Sciences. London, Academic Press, 2001:1290-1298.

    [82]

    Coffin M F, Pringle M S, Duncan R A, et al. Kerguelen hotspot magma output since 130 Ma[J]. Journal of Petrology, 2002, 43(7):1121-1139.

    [83]

    Lawver L A, Grantz A, Gahagan L M. Plate kinematic evolution of the present Arctic region since the Ordovician[C]//In:Miller E L, Grantz A, Klemperer S L (eds.). Tectonic Evolution of the Bering Shelf-Chukchi Sea-Arctic Margin and Adjacent Landmasses. Geological Society of America, Special Paper, Boulder, CO, 2002:333-358.

    [84]

    Wallace P J, Frey F A, Weis D, et al. Origin and evolution of the Kerguelen Plateau, Broken Ridge and Kerguelen Archipelago:Editorial[J]. Journal of Petrology, 2002, 43(7):1105-1108.

    [85]

    Storey M, Mahoney J J, Saunders A D, et al. Timing of hot spot-related volcanism and the breakup of Madagascar and India[J]. Science, 1995, 267:852-855.

    [86]

    Cunningham W D, Dalziel I W D, Lee T Y, et al. Southernmost South America-Antarctic Peninsula relative plate motions since Gondwana break-up:Implications for the tectonic evolution of the Scotia Arc region[J]. Journal of Geophysical Research, 1995, 100:8257-8266.

    [87]

    Lawver L A, Müller R D. Iceland hotspot track[J]. Geology, 1994, 22:311-314.

    [88]

    Lee T Y, Lawver L A. Cenozoic plate reconstruction of the South China Sea region[J]. Tectonophysics, 1994, 235:149-180.

    [89]

    Schuur C L, Coffin M F, Frohlich C, et al. Sedimentary regimes at the Macquarie Ridge Complex:Interaction of Southern Ocean circulation and plate boundary bathymetry[J]. Paleoceanography, 1998, 13(6):646-670.

    [90]

    Lawver L A, Gahagan L M. Opening of Drake Passage and its impact on Cenozoic ocean circulation[C]//In:Crowley T J, Burke K C (eds.). Tectonic Boundary Conditions for Climate Reconstructions. Oxford Monographs on Geology and Geophysics, Oxford Univ. Press, 1998, 39:212-223.

    [91]

    Herold N, Huber M, Greenwood D R, et al. Early to middle Miocene monsoon climate in Australia[J]. Geology, 2010, 39:3-6.

    [92]

    Herold N, You Y, Müller R D, et al. Climate model sensitivity to changes in Miocene paleotopography[J]. Australian Journal of Earth Sciences, 2010, 57:377-379.

    [93]

    Becker T W, Conrad C P, Buffett B, et al. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport[J]. EPSL, 2009, 278:233-242.

    [94]

    Gaina C, Müller R D, Brown B, et al. Breakup and early seafloor spreading between India and Antarctica[J]. Geophysical Journal International, 2007, 170:151-169.

    [95]

    Coltice N, Phillips B R, Bertrand H, et al. Global warming of the mantle at the origin of flood basalts over supercontinents[J]. Geology, 2007, 35:391-394.

    [96]

    Müller R D, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks[J]. Geology, 1993, 21:275-278.

    [97]

    Müller R D, Roest W R, Royer J Y, et al. Digital isochrons of the world's ocean floor[J]. Journal of Geophysical Research-Solid Earth, 1997, 102(B2):3211-3214.

    [98]

    Müller R D, Dutkiewicz A, Seton M, et al. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal[J]. Geology, 2013, 41(8):907-910.

    [99]

    Müller R D. Geophysics:Sedimentary basins feeling the heat from below[J]. Science, 2010a, 329:769-770.

    [100]

    Müller R D. Tectonics:Sinking Continents[J]. Nature Geoscience, 2010b, 3:79-80.

    [101]

    Müller R D. Plate motion and mantle plumes[J]. Nature, 2011, 475:40-41.

    [102]

    Shephard G E, Müller R D, Liu L, et al. Miocene drainage reversal of the Amazon River driven by plate-mantle interaction[J]. Nature Geoscience, 2010, 3:870-875.

    [103]

    Shephard G E, Müller R D, Seton M. The tectonic evolution of the Arctic since Pangea breakup:Integrating constraints from surface geology and geophysics with mantle structure[J]. Earth-Science Reviews, 2013, 124:148-183.

    [104]

    Morra G, Seton M, Quevedo L, et al. Organisation of the tectonic plates in the last 200 Myr[J]. Earth and Planetary Science Letters, 2013, 373:93-101.

    [105]

    Whittaker J M, Müller R D, Gurnis, M. Development of the Australian-Antarctic depth anomaly[J]. Geochemistry Geophysics Geosystems, 2010, 11(Q11006):23.

    [106]

    Whittaker J M, Goncharov A, Williams S E, et al. Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean[J]. Geochem. Geophy. Geosyst., 2013a, 14(8):3297-3305.

    [107]

    Whittaker J M, Williams S E, Müller R D. Revised tectonic evolution of the Eastern Indian Ocean[J]. Geochem. Geophy. Geosyst., 2013b, 14(6):1891-1909.

    [108]

    Gibbons A D, Barckhausen U, Bogaard P, et al. Constraining the Jurassic extent of Greater India:tectonic evolution of the West Australian margin[J]. Geochem. Geophy. Geosyst., 2012, 13(5):25.

    [109]

    Gibbons A D, Whittaker J M, Müller R D. The breakup of East Gondwana:assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model[J]. Journal of Geophysical Research, 2013, 118:1-15.

    [110]

    Wright N, Zahirovic S, Müller R D, et al. Towards adaptable, interactive and quantitative paleogeographic maps[J]. Biogeosciences, 2013, 10:1529-1541.

    [111]

    Flament N, Coltice N, Rey P. A case for late-Archaean continental emergence from thermal evolution models and hypsometry[J]. Earth and Planetary Science Letters, 2008, 275:326-336.

    [112]

    Flament N, Rey P F, Coltice N, et al. Lower crustal flow kept Archean continental flood basalts at sea level[J]. Geology, 2011, 39:1159-1162.

    [113]

    Flament N, Gurnis M, Müller R D. A review of observations and models of dynamic topography[J]. Lithosphere, 2013, 5:189-210.

    [114]

    Masterton S, Gubbins D, Müller R D, et al. Forward modelling of oceanic lithospheric magnetization[J]. Geophysical Journal International, 2012, 25.

    [115]

    Matthews K J, Müller R D, Wessel P, et al. The tectonic fabric of the ocean basins[J]. Journal of Geophysical Research, 2011a, 116(B12):28.

    [116]

    Matthews K J, Hale A J, Gurnis M, et al. Dynamic subsidence of Eastern Australia during the Cretaceous[J]. Gondwana Research, 2011b, 19:372-383.

    [117]

    Matthews K J, Seton M, Müller R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth Planet. Sci. Lett., 2012, 355-356:283-298.

    [118]

    Seton M, Müller R D, Zahirovic S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3-4):212-270.

    [119]

    Herold N, Huber M, Müller R D. Modelling the Miocene climatic optimum, Part 1:land and atmosphere[J]. Journal of Climate, 2011, 24:6353-6372.

    [120]

    Whittaker J M, Müller R D, Leitchenkov G, et al. Response to Comment on:Major Australian-Antarctica Plate Reorganization at Hawaiian-Emperor Bend Time[J]. Science, 2008b, 321(5888):490.

    [121]

    Chandler M T, Wessel P, Taylor B, et al. Reconstructing Ontong Java Nui:Implications for Pacific absolute plate motion, hotspot drift and true polar wander[J]. EPSL, 2012, (331-332):140-151.

    [122]

    Bower J B, Gurnis M, Seton M. Lower mantle structure from paleogeographically constrained dynamic Earth models[J]. Geochem. Geophys. Geosyst., 2013,14:44-63.

    [123]

    Torsvik T H, Müller R D, Van der Voo R, et al. Global plate motion frames:Toward a unified model[J]. Reviews of Geophysics, 2008, 46(3):RG3004.

    [124]

    Rey P F, Müller R D. Fragmentation of Active Continental Plate Margins Owing to the Buoyancy of the Mantle Wedge[J]. Nature Geoscience, 2010, 3:257-261.

    [125]

    Heine C, Müller R D, Steinberger B, et al. Anomalous subsidence in intracontinental basins[J]. Physics of the Earth and Planetary Interiors, 2008, 171:252-264.

    [126]

    Heine C, Müller R D, Steinberger B, et al. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia[J]. Tectonophysics, 2010, 483:135-150.

    [127]

    Liu L, Gurnis M, Seton M, et al. The role of oceanic plateau subduction in the Laramide orogeny[J]. Nature Geoscience, 2010, 3:353-357.

    [128]

    Capitanio F A, Morra G, Goes S, et al. India-Asia convergence driven by the subduction of the Greater Indian continent[J]. Nature, 2010, 3:136-139.

    [129]

    Dyksterhuis S, Müller R D. Cause and evolution of intraplate orogeny in Australia[J]. Geology, 2008, 36:495-498.

    [130]

    Xie X, Müller R D, Ren J, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247:129-144.

    [131]

    Xie X, Müller R D, Li S, et al. Origin of anomalous subsidence along the northern South China Sea Margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23:745-765.

    [132]

    Whittaker J M, Müller R D, Sdrolias M, et al. Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous[J]. Earth and Planetary Science Letters, 2007b, 255:445-457.

    [133]

    Sdrolias S, Müller R D. Controls on Back-arc Basin Formation[J]. Geochemistry Geophysics Geosystems, 2006,7(4):Q04016.

    [134]

    Whittaker J M, Müller R D, Leitchenkov G, et al. Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time[J]. Science, 2007a, 318(5847):83-86.

    [135]

    Whittaker J M, Müller R D, Roest W R, et al. How supercontinents and superoceans affect seafloor roughness[J]. Nature, 2008a, 456:938-941.

    [136]

    Butterworth N P, Quevedo L, Morra G, et al. Influence of overriding plate geometry and rheology on subduction[J]. Geochemistry Geophysics Geosystems, 2012, 13(6):Q06W15.

    [137]

    Gurnis M, Turner M, Zahirovic S, et al. Plate Reconstructions with Continuously Closing Plates[J]. Computers and Geosciences, 2012, 38:35-42.

    [138]

    Müller R D, Dyksterhuis S, Rey P. Australian palaeo-stress fields and tectonic reactivation over the past 100 Myr[J]. Australian Journal of Earth Sciences, 2012, 59:13-28.

    [139]

    Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust[J]. Geochemistry Geophysics Geosystems, 2008a, 9:18-36.

    [140]

    Müller R D, Sdrolias M, Gaina C, et al. Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics[J]. Science, 2008b, 319(5868):1357-1362.

    [141]

    Qin X, Müller R D, Cannon J, et al. The GPlates Geological Information Model and Markup Language Geosci[J]. Instrum. Method. Data Syst., 2012, 1:111-134.

    [142]

    Hoernle K, Hauff F, Werner R, et al. Shallow recycling of continental lithosphere:Generation of a large near-ridge seamount province[J]. Nature Geoscience, 2011, 4:883-887.

    [143]

    Shephard G E, Liu L, Müller R D, et al. Dynamic topography and anomalously negative residual depth of the Argentine Basin[J]. Gondwana Research Letters, 2012a, 22(2):658-663.

    [144]

    Shephard G E, Bunge H P, Schuberth B S A, et al. Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure[J]. Earth and Planetary Science Letters, 2012b, 317-318:204-217.

    [145]

    Blakey R C. Paleogeographic and tectonic controls on some Lower and Middle Jurassic erg deposits, Colorado Plateau[C]//In:Caputo M V, Peterson J A, Franczyk K J (eds.). Mesozoic systems of the Rocky Mountain region, USA:Rocky Mountain Section. Society of Economic Paleontologists and Mineralogists, Special Publication, 1994:273-298.

    [146]

    Blakey R C, Peterson F, Kocurek G. Late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States[J]. Sedimentary Geology, 1988, 56:3-125.

    [147]

    Blakey R C, Basham E L, Cook M J. Early and Middle Triassic paleogeography, Colorado Plateau and vicinity[C]//In:Morales M (ed.). Aspects of Mesozoic Geology and Paleontology of the Colorado Plateau. Museum of Northern Arizona Bulletin, 1993, 59:13-26.

    [148]

    Blakey R C, Havholm K G, Jones L S. Stratigraphic analysis of eolian interactions with marine and fluvial deposits, Middle Jurassic Page Sandstone and Carmel Formation, Colorado Plateau, USA.[J]. Journal of Sedimentary Research, 1996, 66:324-342.

    [149]

    Stampfli G M, Borel G D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones[J]. Earth and Planetary Science Letters, 2002, 196:17-33.

    [150]

    Stampfli G M, Kozur H W. Europe from the Variscan to the Alpine cycles[J]. Geological Society of London, Memoirs, 2006, 32(1):57-82.

    [151]

    Von Raumer J F, Stampfli G M, Borel G D, et al. Organization of pre-Variscan basement areas at the north-Gondwanan margin[J]. International Journal of Earth Sciences, 2002, 91:35-52.

    [152]

    Stampfli G M. Tethyan oceans[J]. Geological Society of London, Special Publications, 2000, 173:1-23.

    [153]

    Wilhem C, Windley B, Stampfli G M. The Altaids of Central Asia:A tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113:303-341.

    [154]

    Vérard C, Flores K E, Stampfli G M. Geodynamic reconstructions of the South America-Antarctica plate system[J]. Journal of Geodynamics, 2012, 53:43-60.

    [155]

    Meinhold G, Arslan A, Lehnert O, et al. Global mass wasting during the Middle Ordovician:Meteoritic trigger or plate-tectonic environment?[J]. Gondwana Research, 2011, 19:535-541.

    [156]

    Stampfli G M, Hochard C. Plate tectonics of the Alpine realm[J]. Geological Society of London, Special Publications, 2009, 327:89-111.

    [157]

    Ferrari O M, Hochard C, Stampfli G M. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (northern Thailand-Myanmar)[J]. Tectonophysics, 2008, 451:346-365.

    [158]

    Von Raumer J F, Stampfli G M, Bussy F. Gondwana-derived microcontinents-The constituents of the Variscan and Alpine collisional orogens[J]. Tectonophysics, 2003, 365:7-22.

    [159]

    Von Raumer J F, Stampfli G M. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios[J]. Tectonophysics, 2008, 461:9-20.

    [160]

    Von Raumer J F, Stampfli G M. Palaeozoic peri-Gondwanan evolution[J]. Terra Nostra, 2000, 1:89.

    [161]

    Stampfli G M, Marcoux J, Baud A. Tethyan margins in space and time[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1991, 87:373-409.

    [162]

    Stampfli G M, Mosar J, Marquer D, et al. Subduction and obduction processes in the Swiss Alps[J]. Tectonophysics, 1998, 296:159-204.

    [163]

    Stampfli G M, Borel G D, Cavazza W, et al. Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369)[J]. Episodes, 2001, 24:222-228.

    [164]

    Stampfli G M, Von Raumer J F, Borel G D. The Palaeozoic evolution of pre-Variscan terranes:From peri-Gondwana to the Variscan collision[J]. Geological Society of America Special Papers, 2002, 364:263-280.

    [165]

    Hauser M, Martini R, Matter A, et al. The break-up of East Gondwana along the northeast coast of Oman:evidence from the Batain basin[J]. Geological Magazine, 2002, 139:45-157.

    [166]

    Fan H P, Zhu W G, Li Z X, et al. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia:The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block[J]. Lithos, 2013, 168:85-98.

    [167]

    Pisarevsky S A, Sten-Åke E, Lauri J P, et al. Mesoproterozoic paleogeography:Supercontinent and beyond[J]. Precambrian Research, 2014, 244:207-225.

    [168]

    Li Z X, Evans D A D, Halverson G. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294:219-232.

    [169]

    Smirnov A V, Evans D A D, Ernst R E, et al. Trading partners:Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn[J]. Precambrian Research, 2013, 224:11-22.

    [170]

    Zhang S H, Li Z X, Wu H C. New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia[J]. Precambrian Research, 2006, 144(3-4):213-238.

    [171]

    Zhang N, Zhong S J, Leng W, et al. A model for the evolution of the Earth's mantle structure since the Early Paleozoic[J]. Journal of Geophysical Research-Solid Earth, 2010, 115(6):22.

    [172]

    Zhang S H, Li Z X, Evans D A D, et al. Pre-Rodinia supercontinent Nuna shaping up:A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353:145-155.

    [173]

    Li Z X, Evans D A D. Late Neoproterozoic 40 degrees intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia[J]. Geology, 2011, 39(1):39-42.

    [174]

    Zhou J B, Li X H, Ge W C, et al. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia[J]. Gondwana Research, 2007, 12(1-2):184-197.

    [175]

    Li Z X, Zhong S J. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics[J]. Physics of The Earth And Planetary Interiors, 2009, 176(3-4):143-156.

    [176]

    Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia:A synthesis[J]. Precambrian Research, 2008a, 160(1-2):179-210.

    [177]

    Li Z X, Li X H, Li W X, et al. Was Cathaysia part of Proterozoic Laurentia? new data from Hainan Island, south China[J]. Terra Nova, 2008b, 20(2):154-164.

    [178]

    Zhong S J, Zhang N, Li Z X, et al. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection[J]. Earth And Planetary Science Letters, 2007, 261(3-4):551-564.

    [179]

    Hoffman P F, Li Z X. A palaeogeographic context for Neoproterozoic glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 277(3-4):158-172.

    [180]

    Evans D A D, Pisarevsky S A. Plate tectonics on early Earth?——weighing the paleomagnetic evidence[C]//In:Condie K, Pease V (eds.). When Did Plate Tectonics Begin? Geological Society of America, Special Paper, 2008, 440:249-263.

    [181]

    Bogdanova S V, Li Z X, Moores E M, et al. Testing the Rodinia hypothesis:Records in its building blocks[J]. Precambrian Research, 2008, 160(1-2):1-4.

    [182]

    Cocks L, Robin M, Torsvik T H. The Palaeozoic geography of Laurentia and western Laurussia:A stable craton with mobile margins[J]. Earth-Science Reviews, 2011, 106(1-2):1-51.

    [183]

    Cocks L, Robin M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117:40-79.

    [184]

    Conrad C P, Steinberger B, Torsvik T H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics[J]. Nature, 2013, 498(7455):479-482.

    [185]

    Torsvik T H, Cocks L, Robin M. From Wegener until now:the development of our understanding of Earth's Phanerozoic evolution[J]. Geologica Belgica, 2012a, 15(3):181-192.

    [186]

    Torsvik T H, Van der Voo R, Preeden U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012b, 114(3-4):325-368.

  • 加载中
计量
  • 文章访问数:  1107
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2013-12-30
修回日期:  2014-05-20

目录