南方稀土矿区隐伏断裂带高密度电法勘探实验

陈书, 舒荣波, 闵刚, 刘康, 袁慧琳, 程蓉. 南方稀土矿区隐伏断裂带高密度电法勘探实验[J]. 矿产综合利用, 2022, (1): 68-73, 103. doi: 10.3969/j.issn.1000-6532.2022.01.009
引用本文: 陈书, 舒荣波, 闵刚, 刘康, 袁慧琳, 程蓉. 南方稀土矿区隐伏断裂带高密度电法勘探实验[J]. 矿产综合利用, 2022, (1): 68-73, 103. doi: 10.3969/j.issn.1000-6532.2022.01.009
Chen Shu, Shu Rongbo, Min Gang, Liu Kang, Yuan Huilin, Cheng Rong. High-density Electrical Exploration Test of Hidden Fault Zone in Southern Rare Earth Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 68-73, 103. doi: 10.3969/j.issn.1000-6532.2022.01.009
Citation: Chen Shu, Shu Rongbo, Min Gang, Liu Kang, Yuan Huilin, Cheng Rong. High-density Electrical Exploration Test of Hidden Fault Zone in Southern Rare Earth Mining Area[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 68-73, 103. doi: 10.3969/j.issn.1000-6532.2022.01.009

南方稀土矿区隐伏断裂带高密度电法勘探实验

详细信息
    作者简介: 陈书(1994-),男,硕士,主要研究地球物理方法在生产中的应用
  • 中图分类号: TD981

High-density Electrical Exploration Test of Hidden Fault Zone in Southern Rare Earth Mining Area

  • 当下南方稀土矿的开采模式依旧为原地浸矿模式,这种开采模式而言,矿山地下发育的裂隙构造、地下暗河、岩溶等不良地质体,会严重降低浸矿液的回收率,同时沿不良地质体泄露的浸矿液对环境会造成严重污染,因此对矿山地下不良地质体的发育状态的调查具有重要的意义。本文针对南方某稀土矿C2矿区的地层分布及构造特征,首先开展高密度电法参数实验,选择合适的测量参数以及温纳-斯伦贝尔2装置测量模式,完成了4条测线的高密度电法测量;通过反演计算获得了实验区的隐伏电性结构模型,圈定了风化层(富含稀土矿的地层)厚度以及隐伏断裂构造的空间展布特征,解释结果与实验区布置的钻探结果一致。勘探成果对于离子性稀土矿储量评估、渗漏通道封堵及收液巷道的布置等提供了重要的参考资料。

  • 加载中
  • 图 1  温纳-施伦贝尔2测量装置跑极示意图

    Figure 1. 

    图 2  测线布置示意图

    Figure 2. 

    图 3  数据处理流程

    Figure 3. 

    图 4  C2-L4线综合解释

    Figure 4. 

    图 5  C2-L5线综合解释

    Figure 5. 

    图 6  C2-L6线综合解释

    Figure 6. 

    图 7  C2-L7线综合解释

    Figure 7. 

    表 1  矿区内各地质体物性参数

    Table 1.  Physical parameters of geological bodies in the mining area

    序号岩性与地层测量点位/个电阻率/(Ω·m-1备注
    1 第四系砂质黏土 10 50~500 不同湿度差别较大
    2 花岗岩风化层 12 300~800 含水不同差别较大
    3 完整花岗基岩层 10 1000~10000 含水不同差别较大
    4 断层破碎带 6 20~400 含水不同差别较大
    下载: 导出CSV
  • [1]

    周贺鹏, 胡洁. 离子型稀土矿化学溶浸影响因素及其调控[J]. 矿产综合利用, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032

    ZHOU H P, HU J. Influencing factors and control of chemical leaching of ion-type rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2019(3):146-151. doi: 10.3969/j.issn.1000-6532.2019.03.032

    [2]

    詹光, 黄草明, 朱景和, 等. 南方离子型稀土冶炼废水治理现状与展望[J]. 矿产综合利用, 2018(3):18-25. doi: 10.3969/j.issn.1000-6532.2018.03.003

    ZHAN G, HUANG C M, ZHU J H, et al. The status quo and prospect of the treatment of ionic rare earth smelting wastewater in southern China[J]. Multipurpose Utilization of Mineral Resources, 2018(3):18-25. doi: 10.3969/j.issn.1000-6532.2018.03.003

    [3]

    张博, 宁阳坤, 曹飞, 等. 世界稀土资源现状[J]. 矿产综合利用, 2018(4):7-12.

    ZHANG B, NING Y K, CAO F, et al. The status quo of rare earth resources in the world[J]. Multipurpose Utilization of Mineral Resources, 2018(4):7-12.

    [4]

    赖丹, 吴一丁. 南方离子性稀土产业发展现状、问题及出路——以赣州为例[J]. 稀土, 2019, 40(4):140-148.

    LAI D, WU Y D. The status quo, problems and solutions of the ionic rare earth industry in Southern China: Taking Ganzhou as an example[J]. Rare Earths, 2019, 40(4):140-148.

    [5]

    郭钟群, 金解放, 赵奎, 等. 离子吸附型稀土开采工艺与理论研究现状[J]. 稀土, 2018, 39(1):132-141.

    GUO Z Q, JIN J F, ZHAO K, et al. Ion adsorption type rare earth mining technology and theoretical research status[J]. Rare Earths, 2018, 39(1):132-141.

    [6]

    Ziqiang Chen, Zhibiao Chen, Xinyu Yan, et al. Stoichiometric mechanisms of dicranopteris dichotoma growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China[J]. Plant and Soil, 2016, 398(1/2):367-379.

    [7]

    陈志彪, 陈志强, 岳辉. 花岗岩红壤侵蚀区水土保持综合研究: 以福建省长汀朱溪小流域为例[M]. 北京: 科学出版社, 2013.

    CHEN Z B, CHEN Z Q, YUE H. Comprehensive research on soil and water conservation in granite red soil erosion area: a case study of Zhuxi small watershed in Changting County, Fujian Province[M]. Beijing: Science Press, 2013.

    [8]

    潘宗涛, 陈志强, 陈志彪, 等. 南方离子吸附型稀土矿区表层土壤稀土有效性及芒萁稀土元素迁移、吸收特征[J]. 稀土, 2019, 40(1):1-13.

    PAN Z T, CHEN Z Q, CHEN Z B, et al. The availability of rare earth elements in surface soils of southern ion-adsorbed rare earth mining areas and the characteristics of migration and absorption of rare earth elements of dichotoma[J]. Rare Earths, 2019, 40(1):1-13.

    [9]

    刘海飞. 高密度电阻率法数据处理方法研究[D]. 长沙: 中南大学, 2004.

    LIU H F. Research on data processing method of high density resistivity method[D]. Changsha: Central South University, 2004.

    [10]

    张来福, 李士强, 刘国强, 等. 输电杆塔下采空区电法探测电极系统设计[J]. 物探与化探, 2020, 44(1):220-225.

    ZHANG L F, LI S Q, LIU G Q, Yet al. Design of electrode system for electric detection of goaf under transmission towers[J]. Physical and Geochemical Exploration, 2020, 44(1):220-225.

    [11]

    李金铭, 罗延钟. 电法勘探新进展[M]. 北京: 地质出版社, 1996.

    LI J M, LUO Y Z. New progress in electrical exploration[M]. Beijing: Geological Publishing House, 1996.

    [12]

    董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003(1):171-176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    DONG H B, WANG Z L. The development and application of high-density electrical method[J]. Earth Science Frontier, 2003(1):171-176. doi: 10.3321/j.issn:1005-2321.2003.01.020

    [13]

    Yasir Safaa F, Jani Janmaizatulriah, Mukri Mazidah. A dataset of visualization methods to assessing soil profile using RES2DINV and VOXLER software. 2019, 24: 103821.

    [14]

    韦乙杰, 袁忠明. RES2DINV在粤北某铅锌矿区激电测深反演中的应用[J]. 物探与化探, 2013, 37(5):827-829.

    WEI Y J, YUAN Z M. The application of RES2DINV in the IP sounding inversion in a lead-zinc mining area in northern Guangdong[J]. Physical and Geochemical Exploration, 2013, 37(5):827-829.

    [15]

    王磊, 蔡晓光, 李孝波, 等. 西吉县西南山区典型黄土地震滑坡高密度电法物探解译分析[J]. 地球物理学进展, 2020, 35(1):351-357.

    WANG L, CAI X G, LI X B, et al. Analysis of high-density electrical geophysical exploration of typical loess seismic landslides in the southwest mountainous area of Xiji County[J]. Progress in Geophysics, 2020, 35(1):351-357.

    [16]

    刘成功, 金胜, 魏文博, 等. 高密度电阻率法比值参数基于阻尼最小二乘反演[J]. 物探与化探, 2019, 43(2):351-358.

    LIU C G, JIN S, WEI W B, et al. High-density resistivity method ratio parameter based on damping least squares inversion[J]. Physical and Geochemical Exploration, 2019, 43(2):351-358.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  908
  • PDF下载数:  113
  • 施引文献:  0
出版历程
收稿日期:  2021-05-24
刊出日期:  2022-02-25

目录