川南典型硫铁矿区土壤污染调查方法

代力, 邓杰. 川南典型硫铁矿区土壤污染调查方法[J]. 矿产综合利用, 2022, 43(3): 113-120, 147. doi: 10.3969/j.issn.1000-6532.2022.03.020
引用本文: 代力, 邓杰. 川南典型硫铁矿区土壤污染调查方法[J]. 矿产综合利用, 2022, 43(3): 113-120, 147. doi: 10.3969/j.issn.1000-6532.2022.03.020
Dai Li, Deng Jie. Experimental Study on Investigation Method of Soil Pollution in Typical Pyrite Mining Area in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 113-120, 147. doi: 10.3969/j.issn.1000-6532.2022.03.020
Citation: Dai Li, Deng Jie. Experimental Study on Investigation Method of Soil Pollution in Typical Pyrite Mining Area in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 113-120, 147. doi: 10.3969/j.issn.1000-6532.2022.03.020

川南典型硫铁矿区土壤污染调查方法

详细信息
    作者简介: 代力(1988-),男,硕士,工程师,从事应用地球化学与矿山地质环境调查研究
  • 中图分类号: TD989;P632+.1

Experimental Study on Investigation Method of Soil Pollution in Typical Pyrite Mining Area in South Sichuan

  • 针对川南典型硫铁矿区特殊的景观地球化学条件和土壤特征,在矿区污染评价中开展土壤调查方法实验。运用多元统计分析、显著性检验、污染负荷指数计算等多种方法,并结合元素地球化学性质综合对比研究元素在不同层位、不同粒级土壤中的富集和分布特征。研究表明,不同层位之间元素富集特征具有显著差异性,采样层位是影响元素总体富集程度的重要因素,表层土壤具有更高的元素总体富集程度,反映矿区污染特征的亲硫元素组合在粗粒级土壤中具有更明显的分布倾向性。建议优选区域适宜性较高采样层位为表层土(0~10 cm),样品制备粒级为-2.00 mm。

  • 加载中
  • 图 1  研究区地质背景与采样点位

    Figure 1. 

    图 2  各层位粒级Q型聚类

    Figure 2. 

    图 3  不同粒级F1、F2因子得分分布

    Figure 3. 

    表 1  各层位粒级土壤元素地球化学特征/(mg·kg-1)

    Table 1.  Element geochemical characteristics in different sampling layers and size fractions

    元素层位粒级最大值最小值中位数平均值含量总和富集系数
    MnTS10547041216201640.51788112.52
    TS20548039716501678.61829682.58
    SS10588033716401645.91794012.53
    SS20574035516601695.61848232.61
    CuTS1029816.410395.78104403.22
    TS2030416.510595.56104163.22
    SS1029516.598.594.57103083.18
    SS2030117.810295.52104113.22
    PbTS1068.320.342.542.8546701.48
    TS2093.123.243.744.2548241.53
    SS1071.418.140.641.3345051.43
    SS2073.517.241.742.3246131.46
    ZnTS1021583.9144140.3152972.82
    TS2022482.3145140.9153612.83
    SS1019583139136.3148582.74
    SS2019782.1140137.0149342.75
    CrTS10389104183189.0205982.56
    TS2038898.2179182.5198952.48
    SS1051799.8180192.2209492.61
    SS2046796.8176185.0201662.51
    NiTS1021931.671.673.7380362.37
    TS2022332.169.072.5879112.33
    SS1021228.867.373.4880092.36
    SS2023031.668.773.4580072.36
    CdTS1020.80.211.572.02220.426.9
    TS2019.40.181.581.96214.026.1
    SS1021.20.131.461.90206.625.3
    SS2020.40.171.361.90207.225.3
    MoTS109.130.852.532.99325.84.98
    TS208.240.812.472.97324.04.95
    SS109.330.712.472.98324.84.97
    SS2010.80.822.443.03330.45.05
    AsTS1027.82.6612.613.5614781.46
    TS2029.33.0912.613.3814591.44
    SS1029.92.3311.913.4014601.44
    SS2029.72.4612.513.1114281.41
    SbTS103.330.321.331.33145.11.18
    TS203.590.361.351.33144.71.18
    SS103.590.331.321.35147.31.19
    SS203.490.291.321.331451.18
    HgTS100.480.040.190.2021.55.06
    TS200.520.020.20.20225.06
    SS100.550.030.190.2122.55.32
    SS200.510.020.20.2022.35.06
    VTS10615138288298.3325173.22
    TS20600134281294.7321263.18
    SS10818137281301.1328223.25
    SS20772142278299.3326203.23
    SeTS103.430.551.441.55168.719.0
    TS204.530.561.461.57171.619.3
    SS103.860.411.331.44157.117.7
    SS204.080.451.451.5316718.8
    FTS105740291559814.3887533.19
    TS205730239554797.3869093.13
    SS106250276559810.0882873.18
    SS205980272570772.6842143.03
    STS102600110540607.8662494.05
    TS203700160550647.0705194.31
    SS10280097530589.2642253.93
    SS20310081532579.5631653.86
    背景值为《中国土壤元素背景值》中四川省A层土壤各元素背景值
    下载: 导出CSV

    表 2  各层位粒级土壤总体污染负荷指数

    Table 2.  Pollution Load Index from different sampling layers and size fractions

    层位、粒级TS10TS20SS10SS20
    3.163.173.093.10
    下载: 导出CSV

    表 3  表层土中不同粒级各元素显著性检验结果

    Table 3.  Significant test between different size fractions in topsoil

    元素AsCdCrCuFHgMnMo
    TS10与TS200.015*0.5380.000*0.7280.2450.0540.000*0.011*
    元素NiPbSSbSeVZn-
    TS10与TS200.0870.000*0.024*0.9440.1550.000*0.033*-
    注:表中*在0.05水平时存在显著性差异
    下载: 导出CSV

    表 4  亚表层土中不同粒级各元素显著性检验结果

    Table 4.  Significant test between different size fractions in subsoil

    元素AsCdCrCuFHgMnMo
    SS10与SS200.8350.3650.000*0.0840.9460.2640.000*1.000
    元素NiPbSSbSeVZn-
    SS10与SS200.025*0.000*0.7330.1070.000*0.001*0.227-
    注:表中*在0.05水平时存在显著性差异
    下载: 导出CSV

    表 5  实验数据因子分析特征

    Table 5.  Principal component analysis of experiment data

    粒级因子因子主成分特征值粒级因子因子主成分特征值
    TS10F1As、Cd、Hg、Mo、Pb、Sb5.17TS20F1As、Cd、Hg、Mn、Mo、Pb、Sb5.35
    F2Cr、Cu、Ni、V3.52F2Cr、Cu、Ni、V3.38
    F3F、Mn、Zn1.53F3F、Mo、Zn1.58
    F4S、Se1.28F4S、Se1.36
    下载: 导出CSV
  • [1]

    高德政, 周开灿, 冯启明, 等. 川南硫铁矿开发中的环境污染与治理[J]. 矿产综合利用, 2001(4):23-27. doi: 10.3969/j.issn.1000-6532.2001.04.006

    GAO D Z, ZHOU K C, FENG Q M, et al. Environmental pollution and harness of exploitating pyrite in South Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2001(4):23-27. doi: 10.3969/j.issn.1000-6532.2001.04.006

    [2]

    张渊, 洪秉信. 川南硫铁矿尾矿的工艺性质与综合利用[J]. 矿产综合利用, 2006(5):21-24. doi: 10.3969/j.issn.1000-6532.2006.05.006

    ZHANG Y, HONG B X. Technological properties and comprehensive utilization of the pyrite tailings in South Sichan[J]. Multipurpose Utilization of Mineral Resources, 2006(5):21-24. doi: 10.3969/j.issn.1000-6532.2006.05.006

    [3]

    邓敏, 程蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    DENG M, CHENG R, SHU R B, et al. Exploration of chemical-microbial combined remediation technology for typical heavy metals-contaminated soils in Panxi Mining Region[J]. Multipurpose Utilization of Mineral Resources, 2021(4):1-9. doi: 10.3969/j.issn.1000-6532.2021.04.001

    [4]

    冉银华, 张志明, 李强. 滇西某尾矿回收硫铁矿物的试验研究[J]. 矿产综合利用, 2019(1):119-122. doi: 10.3969/j.issn.1000-6532.2019.01.026

    RAN Y H, ZHANG Z M, LI Q. Experimental study on the recovery of pyrite from tailings in Western Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(1):119-122. doi: 10.3969/j.issn.1000-6532.2019.01.026

    [5]

    李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    LI R J, ZHOU B. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40. doi: 10.3969/j.issn.1000-6532.2021.04.006

    [6]

    李杰锋. 煤矿复垦区土壤重金属形态分布与富集污染研究[J]. 矿产综合利用, 2022(1):116-120,163. doi: 10.3969/j.issn.1000-6532.2022.01.014

    LI J F. Study on distribution of heavy metals in soil and concentrated pollution in coal mine reclamation area[J]. Multipurpose Utilization of Mineral Resources, 2022(1):116-120,163. doi: 10.3969/j.issn.1000-6532.2022.01.014

    [7]

    何永彬, 张信宝, 李豪. 喀斯特白云岩坡地土壤异质性特征与土壤保育模式研究[J]. 地球与环境, 2013, 41(1):77-81.

    HOU Y B, ZHANG X B, LI H. Research on soil heterogeneous characteristics and soil conservative model for Karst dolomite slope land[J]. Earth and Environment, 2013, 41(1):77-81.

    [8]

    张川东. 基于石灰土物理性质的喀斯特山地生态环境评价——以黔中花溪区、小河区为例[D]. 贵州: 贵州大学, 2009.

    ZHANG C D. Evaluation of karst mountain ecological environment based on physical properties of lime soil[D]. Guizhou: Guizhou University, 2009.

    [9]

    Bavec Š, Gosar M, Biester H, et al. Geochemical investigation of mercury and other elements in urban soil of Idrija (Slovenia)[J]. Journal of Geochemical Exploration, 2015, 154:213-223. doi: 10.1016/j.gexplo.2014.10.011

    [10]

    Xiangdong L, Chi-sun P, Pui S L. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 2001, 16(11).

    [11]

    Kelly J, Thornton I, Simpson P R. Urban Geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain[J]. Applied Geochemistry, 1996, 11(1):363-370.

    [12]

    徐争启, 倪师军, 张成江, 等. 应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金属[J]. 四川环境, 2004, 23(3):64-67. doi: 10.3969/j.issn.1001-3644.2004.03.019

    XU Z Q, NI S J, ZHANG C J, et al. Assessment on heavy metals in the sediments of Jinsha River in Panzhihua Area by pollution load index[J]. Sichuan Environment, 2004, 23(3):64-67. doi: 10.3969/j.issn.1001-3644.2004.03.019

    [13]

    刁理品, 韩润生, 方维萱. 贵州西南部普安-晴隆一带锑金矿勘查区沟系土壤地球化学测量试验[J]. 地质通报, 2010, 29(11):1712-1720. doi: 10.3969/j.issn.1671-2552.2010.11.014

    DIAO L P, HAN R S, FANG W X. Experiment of soil geochemical survey of valley in the Pu’an-Qinglong antimony-gold exploration area, southwestern Guizhou, China[J]. Geological Bulletin of China, 2010, 29(11):1712-1720. doi: 10.3969/j.issn.1671-2552.2010.11.014

  • 加载中

(3)

(5)

计量
  • 文章访问数:  355
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2021-07-27
刊出日期:  2022-06-25

目录