热改性粉煤灰对水中铜的动态吸附研究

骆欣, 刘瑞森, 徐东耀, 叶锦莎. 热改性粉煤灰对水中铜的动态吸附研究[J]. 矿产综合利用, 2022, 43(3): 137-142, 187. doi: 10.3969/j.issn.1000-6532.2022.03.024
引用本文: 骆欣, 刘瑞森, 徐东耀, 叶锦莎. 热改性粉煤灰对水中铜的动态吸附研究[J]. 矿产综合利用, 2022, 43(3): 137-142, 187. doi: 10.3969/j.issn.1000-6532.2022.03.024
Luo Xin, Liu Ruisen, Xu Dongyao, Ye Jinsha. Study on Dynamic Adsorption of Copper in Water by Thermally Modified Fly Ash[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 137-142, 187. doi: 10.3969/j.issn.1000-6532.2022.03.024
Citation: Luo Xin, Liu Ruisen, Xu Dongyao, Ye Jinsha. Study on Dynamic Adsorption of Copper in Water by Thermally Modified Fly Ash[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(3): 137-142, 187. doi: 10.3969/j.issn.1000-6532.2022.03.024

热改性粉煤灰对水中铜的动态吸附研究

  • 基金项目: 国家自然科学基金项目(61472137);河北省科技计划项目(18273619);中央高校基本科研业务费项目(3142014017)
详细信息
    作者简介: 骆欣(1979-),女,副教授,主要从事污染控制理论与技术的研究
  • 中图分类号: TD989;X703

Study on Dynamic Adsorption of Copper in Water by Thermally Modified Fly Ash

  • 以热改性粉煤灰作为吸附剂,采用固定床吸附装置,探究了床层高度、流量、初始浓度等因素对Cu2+动态吸附曲线的影响。在此基础上进行了动态吸附模型的研究,分别研究了Thomas、Yoon-Nelson和Adams-Bohart三种吸附模型。同时也探讨了双组分污染物体系中MFA对Cu2+的动态吸附效果。结果表明,Cu2+的穿透时间随初始离子浓度和流量的增加而缩短,随床层高度的增加而延长。MFA吸附Cu2+的动态行为符合Thomas和Yoon-Nelson模型。降低床层高度、增加初始浓度和流量可以提高Cu2+的吸附速率。根据MFA吸附Cu2+前后的表征,吸附主要机理包括含氧官能团与Cu2+的络合和Na+等阳离子与Cu2+的离子交换。在双组分污染物体系中,溶液中的Zn2+、Pb2+对MFA的Cu2+吸附均产生抑制作用,其影响大小为Pb2+>Zn2+

  • 加载中
  • 图 1  不同层高下Cu2+的穿透曲线

    Figure 1. 

    图 2  不同流量下Cu2+的穿透曲线

    Figure 2. 

    图 3  不同初始浓度下Cu2+的穿透曲线

    Figure 3. 

    图 4  FA和MFA吸附Cu2+的XRD

    Figure 4. 

    图 5  双组分体系中Cu2+的吸附穿透曲线

    Figure 5. 

    图 6  MFA损失率随时间的变化曲线

    Figure 6. 

    表 1  MFA对Cu2+的动态吸附参数

    Table 1.  Dynamic adsorption parameters of Cu2+ on MFA

    Q
    /(mL·min-1)
    C0
    /(mg·L-1)
    H
    /m
    qe,exp
    /(mg·g-1)
    tb
    /min
    t0.5
    /min
    te
    /min
    η
    /%
    22051.84339717061.69
    22071.9110013824063.47
    22092.0413318431067.45
    32091.713510018064.92
    42091.27265910263.81
    21091.4222427841071.06
    23092.146712523062.03
    下载: 导出CSV

    表 2  Thomas模型的拟合参数

    Table 2.  Parameters of Thomas model under different conditions

    Q/
    (mL·min-1)
    c0/
    (mg·L-1)
    H/
    m
    Thomas模型参数
    kT/( mL·(min·mg)-1)qe/(mg·g-1)R2
    22051.971.750.922
    22071.471.850.935
    22091.151.930.947
    32091.661.510.973
    42093.691.180.935
    21092.241.430.932
    23090.861.990.920
    下载: 导出CSV

    表 3  Yoon-Nelson模型的拟合参数

    Table 3.  Parameters of Yoon-Nelson model under different conditions

    Q/
    (mL·min-1)
    c0/
    (mg·L-1)
    H/
    m
    Yoon-Nelson模型参数
    kYN/(min-1)τ/minR2
    22050.0391000.922
    22070.0291470.935
    22090.0231980.947
    32090.0331040.973
    42090.074620.935
    21090.0222920.932
    23090.0261250.920
    下载: 导出CSV

    表 4  Adams-Bohart模型的拟合参数

    Table 4.  Parameters of Adams-Bohart model under different conditions

    Q/
    (mL·min-1)
    c0/
    (mg·L-1)
    H/
    m
    Adams-Bohart模型参数
    kAB/
    (10-3 L·mg-1 min-1)
    N0/(mg·L-1)R2
    22050.791238.220.726
    22070.631242.010.746
    22090.481274.540.755
    32090.641155.980.826
    42091.35874.590.724
    21090.82856.670.774
    23090.331441.670.702
    下载: 导出CSV

    表 5  双组分体系中Cu2+的动态吸附模型拟合参数

    Table 5.  Parameters of different models in the binary system

    二元体系Thomas模型Yoon-Nelson模型
    kT/(mL·(min·mg)-1)qe/(mg·g-1)R2kYN/(min-1)τ/minR2
    Cu-Zn1.361.290.9360.0271320.936
    Cu-Pb2.730.630.9250.055650.925
    Adams-Bohart模型(qe)exp/(mg·g-1)t0.5/min
    kAB/(10-3 L·mg-1 min-1)N0/(mg·L-1)R2
    Cu-Zn0.421003.380.5581.36125
    Cu-Pb0.68518.460.7760.5970
    下载: 导出CSV
  • [1]

    宋明铭. 高碳粉煤灰综合利用技术研究[J]. 矿产综合利用, 2021(3):93-98. doi: 10.3969/j.issn.1000-6532.2021.03.015

    SONG M M. Study on comprehensive utilization technology of high carbon fly ash[J]. Multipurpose Utilization of Mineral Resources, 2021(3):93-98. doi: 10.3969/j.issn.1000-6532.2021.03.015

    [2]

    李沛伦, 胡真, 王成行, 等. 酸改性粉煤灰的制备及其降解选矿废水COD研究[J]. 矿产综合利用, 2019(2):103-108. doi: 10.3969/j.issn.1000-6532.2019.02.021

    LI P L, HU Z, WANG C X, et al. Experimental study on preparation of acid modified fly ash and its degradation of COD in mineral processing wastewater[J]. Multipurpose Utilization of Mineral Resources, 2019(2):103-108. doi: 10.3969/j.issn.1000-6532.2019.02.021

    [3]

    闫玉兵. 改性粉煤灰对含磷废水的处理研究进展[J]. 矿产综合利用, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004

    YAN Y B. Research on modified fly ash treats for phosphorus wastewater[J]. Multipurpose Utilization of Mineral Resources, 2020(5):34-44. doi: 10.3969/j.issn.1000-6532.2020.05.004

    [4]

    Huang X R, Zhao H H, Zhang G B, et al. Potential of removing Cd(Ⅱ) and Pb(Ⅱ) from contaminated water using a newly modified fly ash[J]. Chemosphere, 2020, 242:125148. doi: 10.1016/j.chemosphere.2019.125148

    [5]

    高宏, 李恒, 贺波, 等. 用改性粉煤灰微珠吸附处理铅锌硫化矿选矿废水[J]. 湿法冶金, 2018, 37(1):40-43.

    GAO H, LI H, HE B, et al. Adsorption treatment of benefication wastewater of Pb-Zn sulfide ore by sulphuric acid modified fly ash[J]. Hydrometallurgy of China, 2018, 37(1):40-43.

    [6]

    黄训荣, 赵航航, 张贵宾, 等. 改性粉煤灰对废水中镉的吸附作用[J]. 应用生态学报, 2019, 30(9):3215-3223.

    HUANG X R, ZHAO H H, ZHANG G B, et al. Adsorption of Cd2+ from wastewater by modified fly ash[J]. Chines Journal of Applied Ecology, 2019, 30(9):3215-3223.

    [7]

    Zhang P Z, Zhang X X, Yuan X R, et al. Characteristics, adsorption behaviors, Cu(Ⅱ) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures[J]. Bioresource Technology, 2021, 331:125013-125021. doi: 10.1016/j.biortech.2021.125013

    [8]

    骆欣, 杨怡心, 徐东耀. 热改性粉煤灰对水中Cu(Ⅱ)的吸附研究[J]. 应用化工, 2020, 49(9):2242-2251. doi: 10.3969/j.issn.1671-3206.2020.09.023

    LUO X, YANG Y X, XU D Y. Study on adsorption of Cu(Ⅱ) by thermal modified fly ash[J]. Applied Chemical Industry, 2020, 49(9):2242-2251. doi: 10.3969/j.issn.1671-3206.2020.09.023

    [9]

    雷苏, 曾鹏鑫, 王鹏, 等. Na2CO3基吸附剂颗粒制备及其脱碳性能[J]. 化工进展, 2019, 38(8):3562-3571.

    LEI S, ZENG P X, WANG P, et al. Investigation on granulation and CO2 uptake of Na2CO3-based sorbent pellets[J]. Chemical Industry and Engineering Progress, 2019, 38(8):3562-3571.

    [10]

    Li Y, Liu S B, Wang C, et al. Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide[J]. Journal of Hazardous Materials, 2020, 386:121942.1-11.

    [11]

    Hayati B, Maleki A, Najafi F, et al. Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems[J]. Chemical Engineering Journal, 2018, 346:258-270. doi: 10.1016/j.cej.2018.03.172

    [12]

    Dorado A D, Gamisans X, Valderrama C, et al. Cr (Ⅲ) removal from aqueous solutions: a straightforward model approaching of the adsorption in a fixed-bed column[J]. Journal of Environmental Science and Health Part A, 2014, 49:179-186. doi: 10.1080/10934529.2013.838855

    [13]

    Rokhsare G O, Behruz M, Ali N, et al. Competitive adsorption of nitrate in fixed-bed column packed with bio-inspired polydopamine coated zeolite[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):2232-2240. doi: 10.1016/j.jece.2018.01.049

    [14]

    Zhang X, Bai B, Puma G L, et al. Novel sea buckthorn biocarbon SBC@β-FeOOH composites: efficient removal of doxycycline in aqueous solution in a fixed-bed through synergistic adsorption and heterogeneous Fenton-like reaction [J]. Chemical Engineering Journal. 2016, 284: 698-707.

    [15]

    杜兆林, 陈洪安, 秦莉, 等. 纤维素基吸附材料除污工艺及吸附模型研究进展[J]. 农业资源与环境学报, 2020, 37(1):6-16.

    DU Z L, CHEN H A, QIN L, et al. Decontamination and adsorption modelling by cellulose-based adsorption materials: A review[J]. Journal of Agricultural Resources and Environment, 2020, 37(1):6-16.

    [16]

    He J, Zhou Q H, Guo J S, et al. Incredulity on assumptions for the simplified Bohart-Adams model: 17a-ethinylestradiol separation in lab-scale anthracite columns[J]. Journal of Hazardous Materials, 2020, 384:121501. doi: 10.1016/j.jhazmat.2019.121501

    [17]

    Hui K S, Chao C Y H, Kot S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash[J]. Journal of Hazardous Materials, 2005, 127(1-3):89-101. doi: 10.1016/j.jhazmat.2005.06.027

    [18]

    Zhao D Z, Wang Z, Lu S, et al. An amidoxime-functionalized polypropylene fiber: Competitive removal of Cu(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ) from wastewater and subsequent sequestration in cement mortar[J]. Journal of Cleaner Production, 2020, 274:123049. doi: 10.1016/j.jclepro.2020.123049

    [19]

    Zhu Y, Hu J, Wang J. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) onto xanthate-modified magnetic chitosan[J]. Journal of Hazardous Materials, 2012, 221-222:155-161. doi: 10.1016/j.jhazmat.2012.04.026

    [20]

    Chen C, Wang J L. Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2007, 74:911-917. doi: 10.1007/s00253-006-0739-1

  • 加载中

(6)

(5)

计量
  • 文章访问数:  402
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2021-07-12
刊出日期:  2022-06-25

目录