Research on Process Mineralogy of a High-iron Manganese Ore in Zambia
-
摘要:
赞比亚某高铁锰矿中有用矿物为赤铁矿和各种锰矿物,铁品位为44.71%,锰品位为17.86%。为制定合适的选别工艺流程,通过光学显微镜、化学分析、X射线衍射等手段,对该矿石的化学成分、矿物组成及嵌布特征等方面进行的研究。研究结果表明:该矿石中主要的铁矿物为赤铁矿,含量为61.53%;主要的锰矿物为软锰矿、褐锰矿和硬锰矿,含量分别为18.62%,4.82%和4.66%。最后针对该矿石进行了预富集—磁化焙烧—磁选实验,最终获得铁精矿铁品位平均值为67.97%;铁作业回收率平均值为94.67%。锰精矿锰品位平均值为49.85%;锰作业回收率平均值为88.24%。该研究结果对该矿石的分选工艺流程的制定具有一定的指导意义,同时也能为同类矿石提供借鉴。
Abstract:The useful mineral in a high-iron manganese ore in Zambia is hematite and various manganese minerals, and the iron grade is 44.71%, the manganese grade is 17.86%. In order to make an appropriate sorting process, the chemical composition, mineral composition and embedded characteristics of the ore were studied by optical microscope, chemical analysis and X-ray diffraction. The research results show that the main iron mineral is hematite, the content is 61.53%; the main manganese minerals are anthracite, limonite and soft manganese, the content are 18.62%, 4.82% and 4.66%. Finally, pre-concentration-magnetization roasting-magnetic separation test was carried out on the ore, and the average TFe grade was 67.97%, the average recovery rate was 94.67%; the average Mn grade was 49.85%; the average recovery rate was 88.24%. The research results have certain guiding significance for the formulation of the ore sorting process, and also can provide a reference for similar ore.
-
表 1 原矿化学多元素分析/%
Table 1. Results of raw material chemical multi-element analysis
TFe FeO Mn Mn2+ SiO2 Al2O3 CaO MgO P S 烧失 44.71 <0.1 17.86 <0.1 5.08 1.98 0.18 0.26 0.022 0.004 2.72 表 2 矿石铁化学物相结果分析
Table 2. Iron phase analysis results of the ore
名称 赤铁矿中铁 磁铁矿中铁 硫化铁中铁 碳酸铁中铁 硅酸铁中铁 总铁 含量/% 42.04 0.34 0.22 0.10 0.12 42.82 分布率/% 98.18 0.79 0.51 0.23 0.28 100.00 表 3 矿石锰化学物相结果分析
Table 3. Manganese phase analysis results of the ore
名称 软锰矿中锰 水、褐锰矿中锰 菱锰矿中锰 总锰 含量/% 13.97 3.40 0.69 18.06 分布率/% 77.35 18.83 3.82 100.00 表 4 矿石中主要矿物组成及含量
Table 4. Main minerals composition and contents of the ore
名称 赤铁矿 软锰矿 褐锰矿 硬锰矿 水锰矿 石英 黏土矿物 合计 含量/% 61.53 18.62 4.82 4.66 0.85 2.72 6.80 100.00 表 5 主要矿物工艺粒度统计结果
Table 5. Results of particle size of main mineral processes
粒度/mm 赤铁矿分布率/% 累计含量/% 锰矿物分布率/% 累计含量/% +0.15 93.12 93.12 81.42 81.42 −0.15+0.10 2.74 95.86 7.78 89.20 −0.10+0.075 1.46 97.32 3.62 92.82 −0.075+0.053 0.55 97.87 2.67 95.49 −0.053+0.037 1.33 99.20 3.30 98.79 −0.037 0.80 100.00 1.21 100.00 合计 100.00 100.00 100.00 100.00 -
[1] 王世磊, 章贤臻, 李运姣, 等. 天然锰矿低温NH3-SCR烟气脱硝催化活性研究[J]. 矿产综合利用, 2020(1):76-82.
WANG S L, ZHANG X Z, LI Y J, et al. Performance of low temperature no catalytic oxidation activity of natural manganese ore catalysts[J]. Multipurpose Utilization of Mineral Resources, 2020(1):76-82.
[2] 何欢聚, 季淑娟. 基于专利信息的电解锰渣资源化利用[J]. 矿产综合利用, 2019(6):7-12.
HE H J, JI S J. Resource utilization of electrolytic manganese slag based on patent information[J]. Multipurpose Utilization of Mineral Resources, 2019(6):7-12.
[3] Zhuo Cheng, Guocai Zhu, Yuna Zhao. Study in reduction-roast leaching manganese from low-grade manganese dioxide ores using cornstalk asreductant[J]. Hydrometallurgy, 2008, 96(1):176-179.
[4] 柴斌. 高铁锰矿固态还原—磁选及强化技术[D]. 长沙: 中南大学, 2013.
CHAI B. Process for solid-state reduction and magnetic separation of high iron content manganese ore and its strengthening technology[D]. Changsha: Central South University, 2013.
[5] 洪世琨. 我国锰矿资源开采现状与可持续发展的研究[J]. 中国锰业, 2011, 29(3):13-16.
HONG S K. Research on the mining status and sustainable development of manganese ore resources in China[J]. China’s Manganese Industry, 2011, 29(3):13-16.
[6] 邢万里, 王安建, 王曼丽. 全球锰资源供需形势简析[J]. 矿床地质, 2014, 33(S1):873-874.
XING W L, WANG A J, WANG M L. Brief analysis of global manganese resource supply and demand situation[J]. Mineral Deposits, 2014, 33(S1):873-874.
[7] 赵鹏. 高铁锰矿煤基直接还原—分选研究[D]. 长沙: 中南大学, 2012.
ZHAO P. Process for coal-based direct reduction and magnetic separation of high-iron manganese ore[D]. Changsha: Central South University, 2012.