矿产资源禀赋条件与开发利用异质性:基于河北铁矿资源聚集区的研究

王伊杰, 刘天科, 王雪峰, 时晨. 矿产资源禀赋条件与开发利用异质性:基于河北铁矿资源聚集区的研究[J]. 矿产综合利用, 2022, 43(5): 120-125. doi: 10.3969/j.issn.1000-6532.2022.05.020
引用本文: 王伊杰, 刘天科, 王雪峰, 时晨. 矿产资源禀赋条件与开发利用异质性:基于河北铁矿资源聚集区的研究[J]. 矿产综合利用, 2022, 43(5): 120-125. doi: 10.3969/j.issn.1000-6532.2022.05.020
Wang Yijie, Liu Tianke, Wang Xuefeng, Shi Chen. Endowment Conditions of Mineral Resources and the Heterogeneity of Development and Utilization: a Study Based on the Accumulation Area of Iron Ore Resources in Hebei Province of China[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 120-125. doi: 10.3969/j.issn.1000-6532.2022.05.020
Citation: Wang Yijie, Liu Tianke, Wang Xuefeng, Shi Chen. Endowment Conditions of Mineral Resources and the Heterogeneity of Development and Utilization: a Study Based on the Accumulation Area of Iron Ore Resources in Hebei Province of China[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(5): 120-125. doi: 10.3969/j.issn.1000-6532.2022.05.020

矿产资源禀赋条件与开发利用异质性:基于河北铁矿资源聚集区的研究

  • 基金项目: 自然资源部部门预算项目(121102000000190014;121102000000190010)
详细信息
    作者简介: 王伊杰(1989-),男,博士,副研究员,主要从事资源战略与规划研究
    通讯作者: 刘天科(1978-),男,博士,研究员,主要从事资源战略与规划研究
  • 中图分类号: TD951

Endowment Conditions of Mineral Resources and the Heterogeneity of Development and Utilization: a Study Based on the Accumulation Area of Iron Ore Resources in Hebei Province of China

More Information
  • 本文调查了河北省15座大中型铁矿山,系统地研究了河北地区铁矿资源的空间集聚特征和开发利用现状,具体分析了典型铁矿聚集区铁矿资源禀赋条件、开采和选矿的相似性和异质性、共伴生元素和尾矿的综合利用潜力,并给出了差异化利用的建议。研究结果表明:河北北部成矿类型是岩浆型铁矿床,河北东部成矿类型是沉积变质型铁矿床,河北中南部成矿类型是矽卡岩型铁矿床;三种类型的铁矿床中铁的品位和磁铁矿的占比呈现出矽卡岩型铁矿床>沉积变质型铁矿床>岩浆型铁矿床的规律,选矿回收率也呈现出同样的规律。岩浆型铁矿中的伴生元素TiO2,P2O5和Sc,具有回收利用的价值,应该加强综合利用的研究。铁矿山产生大量的尾矿,可根据其性质研究尾矿利用的方式,尽量减少尾矿的产生。

  • 加载中
  • 图 1  三种类型铁矿床总铁品位分布

    Figure 1. 

    图 2  三种类型铁矿床铁元素在磁铁矿中的分布率

    Figure 2. 

    图 3  三种类型铁矿床铁元素选矿回收率分布

    Figure 3. 

    表 1  铁矿石原矿物相分析/%

    Table 1.  Mineral phase analysis of iron ores

    矿山编号所在地区矿石类型含量/分布率磁性铁中的铁菱铁中的铁赤铁中的铁硫铁中的铁硅酸铁中的铁总铁品位
    1承德市岩浆型含量4.400.361.990.303.7410.79
    分布率40.783.3418.442.7834.66100.00
    2岩浆型含量7.520.362.480.363.2113.93
    分布率53.982.5817.802.5823.04100.00
    3岩浆型含量6.590.363.180.894.0115.03
    分布率43.852.4021.165.9226.68100.00
    4岩浆型含量8.680.863.990.555.0419.12
    分布率45.404.5020.872.8826.36100.00
    5岩浆型含量6.860.433.870.994.0116.16
    分布率42.452.6623.956.1324.81100.00
    6岩浆型含量3.480.563.810.302.8511.00
    分布率31.645.0934.642.7325.91100.00
    7秦皇岛市沉积变质型含量20.960.431.420.032.6825.52
    分布率82.131.685.560.1210.50100.00
    8唐山市沉积变质型含量26.760.860.890.070.7029.28
    分布率91.392.943.040.242.39100.00
    9沉积变质型含量14.470.709.510.232.8227.73
    分布率52.182.5234.290.8310.17100.00
    10沉积变质型含量15.862.093.810.031.0922.88
    分布率69.329.1316.650.134.76100.00
    11沉积变质型含量21.160.701.320.171.2924.64
    分布率85.882.845.360.695.24100.00
    12保定市沉积变质型含量4.671.424.040.230.7611.12
    分布率42.0012.7736.332.076.83100.00
    13矽卡岩型含量25.880.601.210.070.2027.96
    分布率92.562.154.330.250.72100.00
    14邯郸市矽卡岩型含量36.660.131.091.620.5640.06
    分布率91.510.322.724.041.40100.00
    15邢台市矽卡岩型含量43.950.030.700.100.5645.34
    分布率96.930.071.540.221.24100.00
    下载: 导出CSV

    表 2  开采方式和采矿回采率

    Table 2.  Mining methods and mining recovery rate

    矿山编号矿床成因类型开采方式采矿方法采矿回采率/%
    1岩浆型露天开采组合台阶采矿法97.00
    2岩浆型露天开采组合台阶采矿法91.50
    3岩浆型露天开采组合台阶采矿法96.00
    4岩浆型露天开采组合台阶采矿法95.00
    5岩浆型露天开采组合台阶采矿法94.00
    6岩浆型露天开采组合台阶采矿法95.00
    7沉积变质型露天开采组合台阶采矿法91.20
    8沉积变质型地下开采分段凿岩阶段矿房嗣后充填采矿法87.67
    9沉积变质型地下开采无底柱分段崩落采矿法92.00
    10沉积变质型露天开采组合台阶采矿法87.50
    11沉积变质型露天开采组合台阶采矿法96.00
    12沉积变质型露天开采组合台阶采矿法93.67
    13矽卡岩型露天开采组合台阶采矿法97.00
    14矽卡岩型地下开采无底柱分段崩落采矿法82.85
    15矽卡岩型地下开采上向分层充填采矿法91.34
    下载: 导出CSV

    表 3  选矿主要指标

    Table 3.  Main mineral processing performances

    矿山编号矿床成因类型主要目的矿物选矿回收率/%原矿入选品位/%精矿品位/%尾矿品位/%
    1岩浆型主要为磁铁矿,黄铜矿35.6810.7664.917.18
    2岩浆型主要为磁铁矿,其次为赤铁矿49.6613.9763.757.56
    3岩浆型主要为磁铁矿,其次为赤铁矿40.4414.7664.669.56
    4岩浆型主要为磁铁矿,其次为钛铁矿37.4619.1258.3712.97
    5岩浆型主要为磁铁矿,其次为钛铁矿42.0415.9564.3311.15
    6岩浆型主要为磁铁矿,其次为赤铁矿30.6411.1566.328.28
    7沉积变质型主要为磁铁矿,其次为赤铁矿83.7228.3266.247.18
    8沉积变质型主要为磁铁矿,其次为赤铁矿85.5727.0166.985.80
    9沉积变质型主要为磁铁矿,黄铜矿72.3327.8467.2011.00
    10沉积变质型主要为磁铁矿,其次为赤铁矿68.5922.9666.739.44
    11沉积变质型主要为磁铁矿,其次为赤铁矿80.9124.6768.066.40
    12沉积变质型主要为磁铁矿,其次为赤铁矿和菱铁矿31.6010.8265.087.61
    13矽卡岩型主要为磁铁矿,其次为赤铁矿和菱铁矿92.7728.1562.763.42
    14矽卡岩型主要为磁铁矿,其次为赤铁矿和褐铁矿94.3339.9365.659.06
    15矽卡岩型主要为磁铁矿,其次为赤铁矿95.1145.4364.175.24
    下载: 导出CSV
  • [1]

    张艳飞, 郑国栋, 陈其慎, 等. 后疫情时期全球铁矿资源格局分析[J]. 地球学报, 2021, 42(2):209-216. doi: 10.3975/cagsb.2020.102605

    ZHANG Y F, ZHENG G D, CHEN Q S, et al. Analysis of the global iron ore resource pattern in the post-epidemic period[J]. Chinese Journal of Geosciences, 2021, 42(2):209-216. doi: 10.3975/cagsb.2020.102605

    [2]

    YU S W, DUAN H R, CHENG J H. An evaluation of the supply risk for China's strategic metallic mineral resources[J]. Resources Policy, 2020, 70(6):101891.

    [3]

    赵一鸣. 中国主要富铁矿床类型及地质特征[J]. 矿床地质, 2013, 32(4):686-705. doi: 10.16111/j.0258-7106.2013.04.004

    ZHAO Y M. Types and geological characteristics of major iron-rich deposits in China[J]. Mineral Geology, 2013, 32(4):686-705. doi: 10.16111/j.0258-7106.2013.04.004

    [4]

    贺喜, 张举钢, 周吉光, 等. 河北省铁矿资源保障能力分析[J]. 地球学报, 2013, 34(6):731-737. doi: 10.3975/cagsb.2013.06.10

    HE X, ZHANG J G, ZHOU J G, et al. Analysis on the guarantee ability of iron ore resources in Hebei Province[J]. Chinese Journal of Earth Sciences, 2013, 34(6):731-737. doi: 10.3975/cagsb.2013.06.10

    [5]

    印万忠, 徐东, 杨耀辉, 等. 承德某钒钛磁铁矿尾矿资源化利用技术研究[J]. 矿产综合利用, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007

    YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium Magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007

    [6]

    温子龙. 河北省铁矿行业发展现状及未来展望[J]. 冶金经济与管理, 2020, 2:39-41. doi: 10.3969/j.issn.1002-1779.2020.02.010

    WEN Z L. The development status and future prospect of iron ore industry in Hebei Province[J]. Metallurgical Economics and Management, 2020, 2:39-41. doi: 10.3969/j.issn.1002-1779.2020.02.010

    [7]

    工业固废网. 中国大宗工业固体废物综合利用产业发展报告(2020-2021年度)[R], 2021.

    Industrial Solid Waste Network. China's industrial development report on comprehensive utilization of bulk industrial solid waste (2020-2021) [R], 2021.

    [8]

    赵志勇. 冀东铁矿资源价值研究[D]. 唐山: 河北理工学院, 2003.

    ZHAO Z Y. Research on the value of iron ore resources in Jidong[D]. Tangshan: Hebei Institute of Technology, 2003.

    [9]

    沈保丰, 翟安民, 苗培森, 等. 华北陆块铁矿床地质特征和资源潜力展望[J]. 地质调查与研究, 2006(4):244-252. doi: 10.3969/j.issn.1672-4135.2006.04.003

    SHEN B F, ZHAI A M, MIAO P S, et al. Geological characteristics and resource potential prospect of iron ore deposits in the North China continental block[J]. Geological Survey and Research, 2006(4):244-252. doi: 10.3969/j.issn.1672-4135.2006.04.003

    [10]

    张亚明, 王雪峰, 李文超. 铁矿资源综合利用效益评价体系研究[J]. 中国国土资源经济, 2019, 32(4):43-48. doi: 10.19676/j.cnki.1672-6995.0000256

    ZHANG Y M, WANG X F, LI W C. Research on the evaluation system of comprehensive utilization of iron ore resources[J]. China Land and Resources Economy, 2019, 32(4):43-48. doi: 10.19676/j.cnki.1672-6995.0000256

    [11]

    黄雯孝, 卢可可. 攀西钒钛磁铁矿尾矿中钪的提取工艺研究[J]. 矿产综合利用, 2020(2):135-139. doi: 10.3969/j.issn.1000-6532.2020.02.024

    HUANG W X, LU K K. Study on scandium extraction technology for Panxi vanadium titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(2):135-139. doi: 10.3969/j.issn.1000-6532.2020.02.024

    [12]

    陈超, 张裕书, 李潇雨, 等. 攀西某钒钛磁铁矿尾矿中磷的回收实验研究[J]. 矿产综合利用, 2021(4):165-169. doi: 10.3969/j.issn.1000-6532.2021.04.026

    CHEN C, ZHANG Y S, LI X Y, et al. Recovery of phosphorus from a vanadium titanium magnetite tailing in Panxi[J]. Multipurpose Utilization of Mineral Resources, 2021(4):165-169. doi: 10.3969/j.issn.1000-6532.2021.04.026

    [13]

    刘文宝, 张昊, 刘文刚, 等. 铁矿废石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3):118-125. doi: 10.13779/j.cnki.issn1001-0076.2021.03.017

    LIU W B, ZHANG H, LIU W G, et al. Research progress on comprehensive utilization of iron ore waste rock[J]. Mineral Protection and Utilization, 2021, 41(3):118-125. doi: 10.13779/j.cnki.issn1001-0076.2021.03.017

    [14]

    李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的试验研究[J]. 矿产综合利用, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    [15]

    刘俊杰, 梁钰, 曾宇, 等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(5):136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021

    LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021

    [16]

    LI C, SUN H H, BAI J, et al. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of Hazardous Materials, 2010, 174(1-3):71-77. doi: 10.1016/j.jhazmat.2009.09.018

  • 加载中

(3)

(3)

计量
  • 文章访问数:  736
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2022-03-01
刊出日期:  2022-10-25

目录