温度对铜渣和磷矿协同联产制备磷铁影响的实验研究

谢仁齐, 黄润, 刘利, 张金柱. 温度对铜渣和磷矿协同联产制备磷铁影响的实验研究[J]. 矿产综合利用, 2022, 43(6): 42-48. doi: 10.3969/j.issn.1000-6532.2022.06.008
引用本文: 谢仁齐, 黄润, 刘利, 张金柱. 温度对铜渣和磷矿协同联产制备磷铁影响的实验研究[J]. 矿产综合利用, 2022, 43(6): 42-48. doi: 10.3969/j.issn.1000-6532.2022.06.008
Xie Renqi, Huang Run, Liu Li, Zhang Jinzhu. Effect of Temperature on the Co-production of Copper Slag and Middle Low-grade Phosphate Rock[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 42-48. doi: 10.3969/j.issn.1000-6532.2022.06.008
Citation: Xie Renqi, Huang Run, Liu Li, Zhang Jinzhu. Effect of Temperature on the Co-production of Copper Slag and Middle Low-grade Phosphate Rock[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(6): 42-48. doi: 10.3969/j.issn.1000-6532.2022.06.008

温度对铜渣和磷矿协同联产制备磷铁影响的实验研究

详细信息
    作者简介: 谢仁齐(1995-),男,硕士,研究方向为矿产资源综合利用
    通讯作者: 黄润(1984-),男,教授,研究方向为资源综合利用及炼铁新技术、真空冶金
  • 中图分类号: TD952; TF09

Effect of Temperature on the Co-production of Copper Slag and Middle Low-grade Phosphate Rock

More Information
  • 磷铁是一种重要的工业合金物,在炼钢、化工业及新能源领域和建筑业具有举足轻重的作用,磷铁的开发利用不仅可以为企业带来经济效益,也可为国家经济的发展注入活力。本文在T=1200~1400℃,R(CaO/SiO2)=1.0,t=60 min,C=12%条件下进行实验。以磷矿和铜渣为原料,石墨作还原剂,在高温节能管式炉中还原焙烧制取磷铁,还原后的试样进行分离、磨矿,采用XRD、SEM和EDS对磷铁及渣进行表征,结果显示:T<1300℃所得磷铁主要物相为Fe3P,T>1300℃所得磷铁主要物相为Fe3P、Fe2P。还原后测得渣的主要成分为硅酸盐类,以偏硅酸钙为主(CaSiO3)和含有少量的硅酸铝。

  • 加载中
  • 图 1  a:磷矿XRD;b:铜渣XRD

    Figure 1. 

    图 2  中低品位磷矿与铜渣制备磷铁的工艺流程

    Figure 2. 

    图 3  a:磷矿可能发生分解反应的吉布斯自由能;b:生成磷铁的吉布斯自由能;c和d:铜渣可能发生分解反应的吉布斯自由能

    Figure 3. 

    图 4  不同温度下获得到磷铁、金属铁和单质磷

    Figure 4. 

    图 5  不同温度下试样失重率及生成磷铁

    Figure 5. 

    图 6  1200℃、1300℃、1350℃、1400℃温度下磷铁的微观形貌与面扫图

    Figure 6. 

    图 7  还原后生成磷铁XRD

    Figure 7. 

    图 8  还原后渣相XRD

    Figure 8. 

    表 1  磷矿和铜渣的化学成分/%

    Table 1.  Chemical composition of copper slag and phosphate ore

    名称Fe2O3SiO2Na2OSO3MgOCaOAl2O3P2O5ZnOF
    磷矿1.069.790.430.851.7048.941.3832.9802.87
    铜渣56.8320.626.484.802.632.432.130.293.790
    下载: 导出CSV

    表 2  不同温度下点扫描结果/%

    Table 2.  Spot scan results at different temperatures

    FePCOCaSiMgAl
    1200(a)82.0214.372.700.790.000.000.050.07
    1300(a)83.2212.912.740.720.000.400.010.00
    1350(a)82.8613.342.520.670.070.520.030.00
    1400(a)82.8912.582.960.930.080.450.030.09
    1200(b)93.420.914.890.650.000.000.060.08
    1300(b)87.910.626.491.010.003.840.070.06
    1350(b)79.040.3013.044.840.082.550.150.00
    1400(b)82.890.3115.140.680.090.620.000.01
    1200(c)43.460.5653.292.490.040.000.090.07
    1300(c)75.901.6519.671.260.001.310.170.05
    1350(c)6.560.0689.074.050.110.110.020.02
    1400(c)10.530.0781.327.590.240.220.030.00
    1200(d)47.870.9515.6734.560.170.340.240.19
    1300(d)40.702.3633.9919.880.001.361.270.45
    1350(d)48.3712.1817.3320.550.260.530.160.61
    1400(d)69.7212.0913.454.070.090.380.050.14
    下载: 导出CSV
  • [1]

    王富龙, 王珏, 周骏宏, 等. 磷铁的酸解反应活性试验研究[J]. 湿法冶金, 2020, 39(1):26-29. doi: 10.13355/j.cnki.sfyj.2020.01.006

    WANG F L, WANG J, ZHOU J H, et al. Research on acidolysis reaction activity of iron phosphorus[J]. Hydrometallurgy, 2020, 39(1):26-29. doi: 10.13355/j.cnki.sfyj.2020.01.006

    [2]

    马毅, 沈文喆, 袁梅梅, 等. 磷铁渣制备电池级纳米磷酸铁[J]. 化工进展, 2019, 38(11):5015-5023. doi: 10.16085/j.issn.1000-6613.2019-0049

    MA Y, SHENG W Z, YUAN M M, et al. Preparation of battery-sized iron phosphate from iron phosphate slag[J]. Chemical Progress, 2019, 38(11):5015-5023. doi: 10.16085/j.issn.1000-6613.2019-0049

    [3]

    赵曼, 肖仁贵, 廖霞, 等. 水热法以磷铁制备电池级磷酸铁的研究[J]. 材料导报, 2017, 31(10):25-31. doi: 10.11896/j.issn.1005-023X.2017.010.006

    ZHAO M, XIAO R G, LIAO X, et al. Study on the preparation of battery-grade iron phosphate by hydrothermal method[J]. Material Guide, 2017, 31(10):25-31. doi: 10.11896/j.issn.1005-023X.2017.010.006

    [4]

    Yersak T A, Evans T, Whiteley J M, et al. Derivation of an iron pyrite all-solid-state composite electrode with ferrophosphorus, sulfur, and lithium sulfide as precursors[J]. Journal of the Electrochemical Society, 2014, 161(5):663-667.

    [5]

    王涛, 付磊, 李宁. 某硅钙质胶磷矿正反浮选试验研究[J]. 矿产综合利用, 2020(2):91-95. doi: 10.3969/j.issn.1000-6532.2020.02.016

    WANG T, FU L, LI N. Study on direct-reverse flotation of a silica calcinate phosphate ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):91-95. doi: 10.3969/j.issn.1000-6532.2020.02.016

    [6]

    吴中贤, 姜效军, 陶东平. 新型胶磷矿反浮选脱硅阳离子捕收剂试验研究[J]. 矿产综合利用, 2020(5):115-119. doi: 10.3969/j.issn.1000-6532.2020.05.017

    WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5):115-119. doi: 10.3969/j.issn.1000-6532.2020.05.017

    [7]

    丁银贵, 薛逊, 倪文, 等. 铜渣直接还原-磨选二次尾矿利用方式研究[J]. 矿产综合利用, 2019(3):133-140. doi: 10.3969/j.issn.1000-6532.2019.03.030

    DING Y G, XUE X, NI W, et al. Research on utilization of tailings from copper slag through RHF direct reduction-grinding separation process[J]. Multipurpose Utilization of Mineral Resources, 2019(3):133-140. doi: 10.3969/j.issn.1000-6532.2019.03.030

    [8]

    李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的试验研究[J]. 矿产综合利用, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    [9]

    白倩. 磷铁真空热分解及磷铁加镍制备金属磷化物[D]. 昆明: 云南师范大学, 2016.

    BAI Q. Preparation of metal phosphides by vacuum thermal decomposition of iron phosphate and nickel[D]. Kunming: Yunnan Normal University, 2016.

    [10]

    SUN Y, CHEN M, Balladares E, et al. Effect of CaO on the liquid/spinel/matte/gas equilibria in the Si-Fe-O-Cu-S system at controlled P(SO2) 0.3 and 0.6 atm[J]. Calphad, 2020:69.

    [11]

    李洪桂. 冶金原理[M]. 北京: 科学出版社, 2005.

    LI H G. Metallurgical principle[M]. Beijing: Science Press, 2005.

    [12]

    GUANG H L, MING J R, CHONG Z O, et al. Distribution characteristics of phosphorus in the metallic iron during solid-state reductive roasting of oolitic hematite ore[J]. ISIJ International, 2015, 55(11).

    [13]

    Prince S, Avimany D, Gary W, et al. Recovery of metal values from copper slag and reuse of residual secondary slag[J]. Waste Management, 2017:70.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  409
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2020-10-30
修回日期:  2021-10-06
刊出日期:  2022-12-25

目录