Mineral Characteristics and Metamorphic Evolution of Pelitic Gneiss in Wulashan Area, Central Inner Mongolia
-
摘要:
乌拉山新太古代泥质片麻岩出露于内蒙古中部乌拉山岩群榴云片麻岩岩组中,是乌拉山岩组中分布最广的深成变质岩,主要岩性为黑云石榴二长片麻岩。本文通过详细的岩石学观察,对典型变质矿物进行系统矿物化学分析,研究其变质演化特征及构造意义。结果表明:乌拉山岩群榴云片麻岩岩组中泥质片麻岩经历了四个变质演化阶段,并通过变质矿物温压计反演限定其变质条件:早期进变质阶段(M1),其矿物组合特征为核部石榴子石+黑云母+斜长石+石英±夕线石;峰期变质阶段(M2)的矿物组合特征为石榴子石+夕线石+黑云母+斜长石+石英+钾长石,该阶段的温压条件为T=771~870℃,p=7.5~11.2 Kb;峰后近等温减压阶段(M3)以石榴子石边部大量出现堇青石的冠状结构为特征,其矿物组合为石榴子石+堇青石+黑云母+斜长石+石英±夕线石,该阶段的温压条件为T=750~800℃,p=6.1~7.0 Kb;晚期降温阶段(M4)的矿物组合特征为石榴子石+黑云母+斜长石+石英+磁铁矿±钾长石,该阶段的温压条件为T=650~659℃,p=4.3~4.8 Kb,泥质片麻岩的变质演化P-T轨迹具有近等温降压的顺时针型式,表明乌拉山地区新太古代晚期乌拉山岩群曾经历了地壳俯冲加厚随后折返隆升的动力学过程。
Abstract:Wulashan Neoarchean peliticgneiss is exposed in the eclogite gneiss formation of Wulashan group in central Inner Mongolia. It is the most widely distributed plutonic metamorphic rock in Wulashan formation. The main lithology is biotite garnet monzonite gneiss. Through detailed petrological observation, this paper makes a systematic mineral chemical analysis of typical metamorphic minerals, and studies their metamorphic evolution characteristics and tectonic significance. The results show that the pelitic gneiss in the eclogite gneiss formation of Wulashan group has experienced four metamorphic evolution stages, and its metamorphic conditions are limited by metamorphic mineral thermobarometer inversion: early progressive metamorphic stage (M1), its mineral assemblage is characterized by core garnet + biotite + plagioclase + quartz ± sillimanite; The mineral assemblage of the peak metamorphic stage (M2) is characterized by garnet + sillimanite + biotite + plagioclase + quartz + potassium feldspar. The temperature and pressure conditions of this stage are T= 771~870℃, p = 7.5~11.2 Kb; The post peak near isothermal decompression stage (M3) is characterized by the coronal structure of cordierite at the edge of garnet. Its mineral assemblage is garnet + cordierite + biotite + plagioclase + quartz ± sillimanite. The temperature and pressure conditions of this stage are T= 750~800℃, p = 6.1~7.0 Kb; The mineral assemblage in the late cooling stage (M4) is characterized by garnet + biotite + plagioclase + quartz + magnetite ± K-feldspar. The temperature and pressure conditions in this stage are T= 650~659℃, p= 4.3~4.8 Kb. The metamorphic evolution P-T track of argillaceous gneiss has a clockwise pattern of nearly isothermal depressurization. It shows that the Wulashan group in the late Neoarchean in Wulashan area experienced the dynamic process of crustal subduction and thickening followed by exhumation and uplift.
-
Key words:
- Inner Mongolia /
- Wulashan rock group /
- Pelitic gneiss /
- P-T path /
- Metamorphic reaction
-
表 1 乌拉山岩群榴云片麻岩岩组中石榴子石的化学成分/%
Table 1. Chemical composition of garnet in Garnet-biotite gneiss association of Wulashan rock group
样品号 P0122 P0702B1 D3753 D3730 点位 GC GC GR(Bt) GR(Pl) GR(Q) GC GC GR GR(Bt) GC GC GR(Crd) GR(Bt) GR(Pl) GC SiO2 38.11 37.43 37.38 37.22 37.87 38.19 37.32 37.09 37.38 37.93 38.20 38.16 37.49 38.03 38.13 TiO2 0.00 0.02 0.02 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.07 0.02 0.08 Al2O3 22.32 20.90 21.27 21.17 21.12 20.71 21.21 20.54 20.25 20.81 21.06 21.42 21.33 21.42 21.46 Cr2O3 0.20 0.12 0.17 0.22 0.19 0.13 0.15 0.11 0.06 0.10 0.06 0.01 0.10 0.09 0.02 FeOT 29.98 30.54 31.28 30.97 30.71 30.08 32.30 31.51 32.51 29.05 29.21 30.89 31.33 30.74 30.28 MnO 0.52 0.50 0.48 0.57 0.42 0.64 0.60 0.83 0.57 0.52 0.55 0.46 0.45 0.50 0.51 MgO 8.04 7.35 7.27 7.60 8.19 7.98 7.49 7.19 7.29 8.56 8.61 7.53 7.10 7.41 7.84 CaO 1.17 1.12 1.21 1.26 1.25 0.89 0.97 0.90 1.12 1.16 1.16 1.14 1.21 1.90 1.35 Na2O 0.14 0.17 0.01 0.10 0.08 0.05 0.00 0.00 0.05 0.05 0.03 0.06 0.05 0.07 0.07 K2O 0.07 0.04 0.01 0.03 0.00 0.03 0.00 0.02 0.03 0.00 0.00 0.02 0.00 0.04 0.00 Total 100.54 98.18 99.10 99.21 99.84 98.70 100.04 98.19 99.25 98.19 98.87 99.71 99.13 100.22 99.74 以12个氧原子为标准计算的阳离子系数 Si 2.955 2.984 2.966 2.952 2.974 2.982 3.021 2.948 2.984 3.004 3.004 2.995 2.973 2.977 2.986 Ti 0.000 0.001 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.004 0.001 0.005 Al 2.036 1.907 1.986 1.977 1.951 1.942 1.928 1.971 1.901 1.939 1.948 1.978 1.970 1.973 1.977 Cr 0.012 0.007 0.011 0.014 0.012 0.007 0.008 0.009 0.004 0.006 0.004 0.001 0.006 0.006 0.001 Fe3+ 0.104 0.137 0.106 0.180 0.151 0.133 0.048 0.186 0.205 0.077 0.067 0.059 0.086 0.118 0.074 Fe2+ 1.826 1.860 1.953 1.852 1.852 1.966 1.931 1.923 1.939 1.834 1.841 1.956 1.977 1.877 1.896 Mn 0.034 0.033 0.032 0.038 0.028 0.056 0.043 0.040 0.038 0.035 0.037 0.031 0.030 0.033 0.034 Mg 0.935 0.902 0.865 0.905 0.953 0.867 0.947 0.887 0.872 1.017 1.015 0.887 0.836 0.870 0.921 Ca 0.097 0.093 0.103 0.107 0.105 0.078 0.075 0.082 0.096 0.098 0.098 0.096 0.102 0.159 0.113 Na 0.020 0.025 0.002 0.016 0.012 0.000 0.008 0.000 0.008 0.008 0.004 0.009 0.008 0.011 0.011 K 0.007 0.004 0.001 0.003 0.000 0.002 0.003 0.000 0.003 0.000 0.000 0.002 0.000 0.004 0.000 XMg 0.339 0.326 0.307 0.328 0.340 0.329 0.316 0.306 0.310 0.357 0.355 0.312 0.297 0.317 0.327 Alm 63.12 64.42 66.13 63.80 63.04 64.44 65.58 66.26 65.83 61.48 61.56 65.89 67.14 63.86 63.96 Pyr 32.32 31.22 29.30 31.17 32.43 31.61 30.24 29.22 29.62 34.08 33.93 29.86 28.39 29.60 31.08 Spe 1.19 1.13 1.09 1.33 0.95 1.43 1.37 1.89 1.30 1.16 1.23 1.03 1.01 1.13 1.14 Gro 3.37 3.23 3.48 3.70 3.58 2.52 2.80 2.62 3.25 3.29 3.28 3.23 3.46 5.42 3.82 注:FeOT=Fe2O3+FeO;XMg=(Mg/(Fe+Mg2+)). GC石榴子石核部,GR(Bt)与黑云母接触的石榴子石边部,GR(Pl) 与斜长石接触的石榴子石边部,GR(Crd) 与堇青石接触的石榴子石边部,GR(Q)与石英接触的石榴子石边部 表 2 乌拉山岩群榴云片麻岩岩组中黑云母和堇青石化学成分 /%
Table 2. Chemical composition of garnet and cordierite in Garnet-biotite gneiss association of Wulashan rock group
样品号 P0122 P0702 D3753 D3730 D3730 矿物 Bt Crd 点位 B(Grt) B(GrtR) B(GrtR) B(GrtR) B(GrtR) B(GrtC) Bt(M) Bt(M) B(GrtR) B(Crd) B(GrtC) C(Grt) C(Grt) Crd(M) SiO2 35.98 35.85 36.17 36.37 35.84 36.15 35.82 35.21 36.43 35.41 36.34 48.06 48.04 48.26 TiO2 5.38 4.46 5.13 4.51 4.16 4.53 4.02 4.07 4.06 4.62 4.16 0.00 0.00 0.00 Al2O3 16.14 16.49 15.25 17.14 18.33 17.33 17.07 16.89 18.45 17.54 16.82 33.21 33.54 33.77 Cr2O3 0.09 0.21 0.35 0.13 0.27 0.30 0.05 0.05 0.19 0.17 0.11 0.00 0.00 0.00 FeOT 14.35 14.09 12.38 13.57 13.09 13.43 17.25 16.81 13.26 13.97 13.56 6.46 6.04 5.86 MnO 0.10 0.05 0.05 0.05 0.04 0.06 0.03 0.08 0.05 0.10 0.05 0.03 0.04 0.05 MgO 13.77 13.99 15.68 14.05 14.34 13.64 12.08 12.42 13.62 14.25 14.56 8.82 9.13 9.25 CaO 0.17 0.17 0.13 0.09 0.04 0.02 0.04 0.01 0.03 0.04 0.05 0.03 0.01 0.02 Na2O 0.19 0.36 0.45 0.06 0.01 0.09 0.16 0.14 0.16 0.34 0.17 0.12 0.04 0.04 K2O 9.13 9.33 9.66 8.44 9.07 9.67 9.46 9.59 8.74 9.52 9.41 0.01 0.01 0.02 Total 95.28 94.99 95.26 94.42 95.19 95.22 95.98 95.25 94.99 95.96 95.23 96.74 96.85 97.27 氧离子数 11 11 11 11 11 11 11 11 11 11 11 18 18 18 Si 2.683 2.683 2.689 2.705 2.648 2.686 2.688 2.665 2.689 2.624 2.698 4.985 4.967 4.968 Ti 0.304 0.250 0.286 0.252 0.231 0.251 0.228 0.231 0.225 0.257 0.232 0.000 0.000 0.000 Al 1.431 1.452 1.333 1.500 1.593 1.506 1.516 1.504 1.602 1.529 1.469 4.053 4.080 4.083 Cr 0.005 0.012 0.021 0.008 0.016 0.018 0.003 0.003 0.011 0.010 0.006 0.000 0.000 0.000 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.012 Fe2+ 0.920 0.900 0.783 0.875 0.832 0.857 1.149 1.084 0.847 0.882 0.862 0.556 0.520 0.490 Mn 0.007 0.003 0.003 0.003 0.002 0.004 0.002 0.005 0.003 0.006 0.003 0.003 0.003 0.004 Mg 1.556 1.571 1.749 1.568 1.589 1.512 1.266 1.409 1.508 1.584 1.622 1.372 1.416 1.441 Ca 0.014 0.013 0.010 0.007 0.003 0.002 0.003 0.001 0.002 0.003 0.004 0.003 0.001 0.002 Na 0.028 0.052 0.064 0.009 0.001 0.013 0.024 0.021 0.023 0.049 0.024 0.024 0.008 0.008 K 0.878 0.891 0.917 0.801 0.856 0.912 0.912 0.926 0.824 0.901 0.892 0.001 0.001 0.003 XMg 0.628 0.636 0.691 0.642 0.656 0.638 0.551 0.565 0.640 0.642 0.653 0.711 0.731 0.742 AlⅥ 0.317 0.317 0.311 0.295 0.352 0.314 0.295 0.335 0.311 0.376 0.302 注:FeOT=Fe2O3+FeO;XMg=(Mg/(Fe+Mg2+)); B(Grt)B(Crd)与石榴子石接触的黑云母,B(M)基质中的黑云母;C(Grt)与石榴子石接触的堇青石,Crd(M)基质中的堇青石。 表 3 乌拉山岩群榴云片麻岩岩组中长石化学成分 /%
Table 3. Chemical composition of feldspar in Garnet-biotite gneiss association of Wulashan rock group
样品号 P0122 P0702 D3753 D3730 点位 Pl(Grt) Pl(M) Pl(Grt) Pth(Kfs) Pth(Pl) Pth(Kfs) Pl(Bt) Pl(Grt) Pl(Grt) Pl(M) Pl(Grt) Pl(Grt) Pl(M) SiO2 63.48 61.98 62.81 63.96 59.62 63.38 59.19 61.05 60.81 58.89 59.45 61.37 63.41 TiO2 0.01 0.02 0.02 0.02 0.00 0.02 0.01 0.00 0.01 0.04 0.00 0.00 0.00 Al2O3 20.90 23.77 21.35 20.46 23.97 20.21 24.27 23.99 23.96 24.93 24.06 23.12 21.11 Cr2O3 0.02 0.05 0.00 0.00 0.01 0.01 0.00 0.01 0.04 0.16 0.04 0.05 0.04 FeOT 0.16 0.15 0.08 0.01 0.03 0.00 0.39 0.01 0.02 0.00 0.21 0.03 0.11 MnO 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.00 MgO 0.00 0.02 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.02 0.01 0.02 0.01 CaO 5.94 5.43 5.86 0.00 6.31 0.12 4.84 6.08 5.85 6.9 6.34 6.88 6.13 Na2O 8.48 8.16 8.27 1.17 7.42 1.31 9.32 8.31 8.25 8.58 8.05 7.51 8.34 K2O 0.25 0.16 0.14 14.51 0.17 15.11 0.32 0.24 0.17 0.29 0.24 0.26 0.29 Total 99.24 99.74 98.55 100.16 97.53 100.15 98.37 99.69 99.11 99.82 98.43 99.25 99.44 以8个氧原子为标准计算的阳离子系数 Si 2.841 2.755 2.827 2.933 2.716 2.922 2.690 2.726 2.728 2.648 2.697 2.751 2.833 Ti 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 AlⅥ 0.159 0.245 0.173 0.067 0.284 0.078 0.310 0.274 0.272 0.352 0.303 0.249 0.167 AlⅣ 0.942 1.007 0.957 1.036 1.000 1.019 0.988 0.986 0.992 0.966 0.981 0.970 0.943 Cr 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.006 0.001 0.002 0.001 Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Fe2+ 0.006 0.005 0.003 0.000 0.001 0.000 0.014 0.000 0.001 0.000 0.008 0.001 0.004 Mn 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 Mg 0.000 0.001 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.001 0.001 0.001 0.001 Ca 0.285 0.260 0.283 0.000 0.308 0.006 0.236 0.291 0.281 0.332 0.308 0.330 0.293 Na 0.735 0.707 0.720 0.104 0.654 0.117 0.820 0.718 0.716 0.747 0.707 0.652 0.721 K 0.014 0.009 0.008 0.849 0.010 0.889 0.019 0.014 0.010 0.017 0.014 0.015 0.017 SUM 4.983 4.993 4.972 4.992 4.974 5.032 5.079 5.010 5.002 5.071 5.021 4.972 4.980 Ab 71.06 72.40 71.22 10.88 67.29 11.55 76.35 70.22 71.12 68.14 68.70 65.36 69.94 An 27.57 26.67 27.96 0.00 31.69 0.57 21.92 28.44 27.92 30.34 29.95 33.15 28.46 Or 1.37 0.92 0.82 89.12 1.02 87.87 1.73 1.34 0.97 1.52 1.35 1.49 1.60 注:FeOT=Fe2O3+FeO,Pl(Grt)与石榴子石接触的斜长石,Pl(Bt)与黑云母接触的斜长石,Pl(M)基质中的斜长石,Pth(Pl),Pth(Kfs)条纹长石中的斜长石 表 4 乌拉山岩群榴云片麻岩岩组样品的温度和压力计算结果
Table 4. Geothermobarometry calculation of Garnet-biotite gneiss association of Wulashan rock group
阶段 样品号 温度计 T/℃ 参考文献 压力计 P/Kb 参考文献 M1 P0122 Grt-Bt
4~5 Kb642~649 Perchuk & Lavrent'eva, 83 637~645 Perchuk et. al., 85 647~650 Lavrent'eva & Perchuk, 81 638~641 Holdaway & Lee, 77 M2 D3753 Grt-Bt
8~9 Kb771~779 Perchuk & Lavrent'eva, 83 7.5~9.3 Newton & Haselton, 81 835~845 Perchuk et. al., 85 Grt-Pl-Sil-Q 9.4~11.2 Koziol, 89 822~826 Lavrent'eva & Perchuk, 81 750~850℃ 8.3~10.0 Koziol & Newton 88 865~870 Holdaway & Lee, 77 M3 D3730 Grt-Crd
4~7 Kb726~736 Holdaway & Lee, 77 6.1~6.9 Perchuck et. al., 85 759~769 Bhattacharya et. al., 88 Grt-Crd-Sil-Q 7.0~6.8 Holdaway & Lee, 77 732~744 Perchuck et. al., 85 600~800℃ 6.4~6.5 Wells, 79 759~771 Thompson, 76 M4 D3730 Grt-Bt
4~5 Kb656~663 Perchuk & Lavrent'eva, 83 4.3~4.8 Hoisch, 90 650~659 Perchuk et. al., 85 Grt-Bt-Pl-Q 661~664 Lavrent'eva & Perchuk, 81 600~650℃ 654~658 Holdaway & Lee, 77 -
[1] 杨振升, 徐仲元, 刘正宏, 等. 高级变质区岩石地层系统建立的思考与实践-以内蒙古大青山-乌拉山地区为例[J]. 中国地质, 2003, 30(4):343-351. YANG Z S, XU Z Y, LIU Z H, et al. Consideration and practice of the construction of litho stratigraphic systems in high-grade metamorphic terrains-Acase study in the Daqingshan-Wulashan area[J]. Geology in China, 2003, 30(4):343-351. doi: 10.3969/j.issn.1000-3657.2003.04.004
[2] 沈其韩, 张荫芳, 高吉凤, 等. 内蒙古中南部太古宙变质岩[J]. 中国地质科学院地质研究所所刊, 1990, 21:1-188. SHEN Q H, ZHANG Y F, GAO J F, et al. Archean metamorphic rocks in central and Southern Inner Mongolia[J]. Acta GeoscienticaSinica, 1990, 21:1-188.
[3] 沈其韩, 张荫芳. 内蒙古中南部早前寒武系变质岩原岩建造和变质作用特征[J]. 中国地质科学院院报, 1990, 20:41-43. SHEN Q H, ZHANG Y F. The characteristics of the early precamnrian metamorphic protolith formation, their metamorphism and evolution in central southern Inner Mongolia, China[J]. Acta Geoscientica Sinica, 1990, 20:41-43.
[4] 刘喜山, 金巍, 李树勋. 内蒙古中部早元古代造山事件中麻粒岩相低压变质作用[J]. 地质学报, 1992, 66(3):244-256. LIU X S, JIN W, LI S X. Low-pressure metamorphism of granulite facies in an early Proterozoic orogenic event in central inner Mongolia[J]. Acta Geologica Sinica, 1992, 66(3):244-256. doi: 10.19762/j.cnki.dizhixuebao.1992.03.005
[5] 李树勋. 华北陆台北缘基础地质问题与找矿前景[J]. 辽宁地质, 1994, 1-2:6-11. LI S X. Some issues on basic geology and ore-search prospect on the north margin of north China platform[J]. Land & Resources, 1994, 1-2:6-11.
[6] 甘盛飞, 钱祥麟. 蒙古大青山太古宙麻粒岩带的板块构造演化模式[J]. 地质学报, 1996, 70(4):298-308. GAN S F, QIAN X L. A Plate-tectonic model for the evolution of the daqingshan granulite belt in Inner Mongolia, China[J]. Acta Geologica Sinica, 1996, 70(4):298-308.
[7] 郭敬辉, 翟明国, 李江海, 等. 华北克拉通早前寒武纪桑干构造带的岩石组合特征和构造性质[J]. 岩石学报, 1996, 12(1):193-207. GUO J H, ZHAI M G, LI J H , et al. Nature of the Early Precambrian Sanggan Structure Zone in North China Craton: Evidence from Rock Association[J]. Acta Petrologica Sinica, 1996, 12(1):193-207. doi: 10.3321/j.issn:1000-0569.1996.02.003
[8] 赵国春, 孙敏. 华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学(D辑), 2002, 32:538-549. ZHAO G C, SUN M. Characteristics of basement tectonic units of North China Craton and early Proterozoic amalgamation[J]. Scientia Sinica(Terrae), 2002, 32:538-549. doi: 10.3321/j.issn:1006-9267.2002.07.002
[9] 吴昌华, 孙敏, 李惠民, 等. 乌拉山-集宁孔兹岩锆石激光探针等离子质谱(LA-ICP-MS)年龄——孔兹岩沉积时限的年代学研究[J]. 岩石学报, 2006, 22(11):2639-54. WU C H, SUN M, LI H M, et al. LA-ICP-MS U-Pbzircon ages of the khondalites form the Wulashan and Jining high-grade terrain in northern margin of the North China Craton: constraints on sedimengtary age of the khondalite[J]. Acta Petrologica Sinica, 2006, 22(11):2639-54. doi: 10.3321/j.issn:1000-0569.2006.11.003
[10] 杜菊民, 张庆龙, 徐士银, 等. 阴山晚中生代板内造山特征及其动力机制—以内蒙大青山为例[J]. 地质学报, 2009, 83(7):910-922. DU J M, ZHANG Q L, XU S Y, et al. Characteristics and dynamic mechanism of Late Mesozoic intraplate orogeny in Yinshan: a case study of Daqingshan, Inner Mongolia[J]. Acta Geologica Sinica, 2009, 83(7):910-922. doi: 10.3321/j.issn:0001-5717.2009.07.002
[11] 翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地质科学, 2011, 41(8):1037-1046. ZHAI M G. Cratonization and the formation of the North China block[J]. Scientia Sinica(Terrae), 2011, 41(8):1037-1046.
[12] 徐仲元, 刘正宏, 董晓杰. 内蒙古大青山北麓蓝晶石榴长英质片麻岩的发现: 岩相学、地球化学和锆石SHRIMP定年[J]. 地质评论, 2011, 57(2):243-251. XU Z Y, LIU Z H , DONG X J. Discovery of Kyanite Garnet Quartz feld spathic Gneiss in the North Side of Daqing Mts. , Inner Mongolia, and Its Petrography, Geochemistry and Zircon SHRIMP Dating[J]. Geological Review, 2011, 57(2):243-251.
[13] 周喜文, 赵国春, 耿元生. 贺兰山高压泥质麻粒岩—华北克拉通西部陆块拼合的岩石学证据[J]. 岩石学报, 2010, 26:2113-21. ZHOU X W, ZHAO G C, GENG Y S. Helan Shan high pressure peliticgranulite petrological evidence for collision event in the western block of the China Craton[J]. Acta Petrologica Sinica, 2010, 26:2113-21.
[14] 李江海, 刘守偈. 超高温变质作用: 以华北内蒙古土贵乌拉地区为例[J]. 地学前缘, 2007, 14(3):132-137. LI J H, LIU S J. Review of ultrahigh-temperature (UHT) metamorphism study: a case from North China Craton[J]. Earth Science Frontiers, 2007, 14(3):132-137.
[15] 刘守偈, 李江海, Mr. santosh. 内蒙古土贵乌拉孔兹岩带超高温变质作用: 变质反应结构及P-T指示[J]. 岩石学报, 2008, 24(6):1186-1192. LIU S Y, LI J H, Mr. santosh. Ultrahigh temperature metamorphism in tuguiwulakhondalite belt, Inner Mongolia: metamorphic structure and P-T indication[J]. Acta Petrologica Sinica, 2008, 24(6):1186-1192.
[16] 蔡佳, 刘平华, 刘福来, 等. 大青山-乌拉山变质杂岩带石拐地区富铝片麻岩成因矿物学与变质演化[J]. 岩石学报, 2013, 29(2):437-461. CAI J, LIU P H, LIU F L. et al. Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area, Daqingshan-Wulashan metamorphic complex belt[J]. Acta Petrologica Sinica, 2013, 29(2):437-461.
[17] 孙凯, 周肃, 赵志丹, 等. 西藏尼木变质岩特征及变质温压条件[J]. 岩石学报, 2011, 27(12):3718-3726. SUN K, ZHOU S, ZHAO Z D, et al. Characteristics and pressure-temperature conditions of Nimu metamorphic rocks, Tibet[J]. Acta Petrologica Sinica, 2011, 27(12):3718-3726.
[18] 靳是琴, 李鸿超. 几种常见矿物的成因矿物学, 成因矿物学概论(下册)[M]. 长春: 吉林大学出版社, 1984, 221-270.
JIN S Q, LI H C. Genetic mineralogy of several common minerals[M]. Introduction to genetic mineralogy (Volume 2). Changchun: Jilin University Press. 1984, 221-270.
[19] 王薇, 叶惠文. 内蒙古千里山群片麻岩中堇青石的形成与演化[J]. 长春地质学院学报, 1996, 26(3):273-277. WANG W, YE H W. Formation and evolution of cordierite in gneiss of Qianlishan group, Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition), 1996, 26(3):273-277.
[20] 常丽华, 陈曼云, 金巍, 等. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2006, 107-108.
CHANG L H, CHEN M Y, JING W, et al. Handbook for identification of transparent mineral flakes[M]. Geological Publishing House. 2006, 107-108.
[21] Reche J and Martinez FJ. GPT: An excel spreadsheet for thermobarometric calculations in metapelitic rocks[J]. Computers & Geosciences, 1996, 22(7):775-784.
[22] Holdaway MJ and Lee SM. Fe-Mg cordierite stability in high-gradepelitic rocks based on experimental, theoretical and natural observations[J]. Contributions to Mineralogy and Petrology, 1977, 63(2):175-198. doi: 10.1007/BF00398778
[23] Lavrent’eva, I. V. , and Perchuk, L. L. , Phase correspondence in the system biotite-garnet: experimentaldata: Dokl[J]. Akad. Nauk SSSR, 1981, 260: 731-734.
[24] Perchuk, L. L. , and Lavrent’eva, I. V. Experimental investigation of exchange equilibria in the system eastern Siberia[J], USSR: Jour. Metamorphic Geology, 1983, 3(3): 265-3 10.
[25] Perchuk LL, Aranovich LY, Podlesskii KK, et al. Precambrian granulites of the Aldan shield, eastern Sibéria[J]. USSR. Journal of Metamorphic Geology, 1985, 3(3):265-310. doi: 10.1111/j.1525-1314.1985.tb00321.x
[26] 周喜文. 变泥质岩石中夕线石的成因[J]. 长春科技大学学报, 2001, 31(4):416. ZHOU X W. Genesis of sillimanite in metaargillaceous rocks[J]. Journal of Jilin University(Earth Science Edition), 2001, 31(4):416. doi: 10.3969/j.issn.1671-5888.2001.04.025
[27] Newton RC and Haselton HT. Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In: Newton RC, Navrotsky A and Wood BJ (eds. ). Thermodynamics of Minerals and Melts[J]. New York: Springer-Verlag, 1981:131-147.
[28] Koziol, A. M. , and Newton, R. C. , Redetermination of the anorthite breakdown reaction and improvement of the plagioclase, garnet, AlSiO, quartz barometer : Am[J]. Mineralogist, 1988, 73(34): 216-223.
[29] Koziol, A. M. , Recalibration of the garnet-plagioclase-Al, SiO, quartz(GASP)geobarometerandapplications to natural parageneses[J]: EOS, 1989, 70(15): 493.
[30] Bhattacharya A, Mazumdar AC and Sen SK. Fe-Mg mixing incordierite: Constraints from natural data and implications forcordierite-garnet geothermometry in granulites[J]. American Mineralogist, 1988, 73(3-4):338-344.
[31] 王舫, 刘福来, 刘平华, 等. 胶北地区早前寒武纪孔兹岩系的变质演化[J]. 岩石学报, 2010, 26(7):2057-2072. WANG F, LIU F L, LIU P H, et al. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province[J]. Acta Petrologica Sinica, 2010, 26(7):2057-2072.
[32] Hoisch, T. D. Empirical calibration of six geobarom-eters for the mineral assemblage quartz+muscovite+biotite+plagioclase+garnet: Contrib[J]. Miner. Petrol, 1990, 104(2):225-234. doi: 10.1007/BF00306445
[33] England PC and Thompson AB. Pressure-temperature-time paths ofregional metamorphism I Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4):894-928. doi: 10.1093/petrology/25.4.894
[34] Harley SL. The origins of granulites: A metamorphic perspective[J]. Geological Magazine, 1989, 126:215-247.
[35] Brown M. P-T-tevolution of orogenicbeltsand the causes of regional metamorphism[J]. Geological Society of London, 1993, 150:227-241. doi: 10.1144/gsjgs.150.2.0227