川西热达门伟晶岩型稀有金属矿床锂辉石C-H-O同位素组成及意义

张伟, 邹林, 唐文春, 黄健, 段威, 杨贵兵, 范映武, 李小松, 黄建国. 川西热达门伟晶岩型稀有金属矿床锂辉石C-H-O同位素组成及意义[J]. 矿产综合利用, 2023, 44(1): 45-54, 69. doi: 10.3969/j.issn.1000-6532.2023.01.006
引用本文: 张伟, 邹林, 唐文春, 黄健, 段威, 杨贵兵, 范映武, 李小松, 黄建国. 川西热达门伟晶岩型稀有金属矿床锂辉石C-H-O同位素组成及意义[J]. 矿产综合利用, 2023, 44(1): 45-54, 69. doi: 10.3969/j.issn.1000-6532.2023.01.006
Zhang Wei, Zou Lin, Tang Wenchun, Huang Jian, Duan Wei, Yang Guibing, Fan Yingwu, Li Xiaosong, Huang Jianguo. The C-H-O Isotopic Composition and Significance of Spodumene for Redamen Pegmatite Type Rare Metal Deposit in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 45-54, 69. doi: 10.3969/j.issn.1000-6532.2023.01.006
Citation: Zhang Wei, Zou Lin, Tang Wenchun, Huang Jian, Duan Wei, Yang Guibing, Fan Yingwu, Li Xiaosong, Huang Jianguo. The C-H-O Isotopic Composition and Significance of Spodumene for Redamen Pegmatite Type Rare Metal Deposit in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(1): 45-54, 69. doi: 10.3969/j.issn.1000-6532.2023.01.006

川西热达门伟晶岩型稀有金属矿床锂辉石C-H-O同位素组成及意义

  • 基金项目: 四川省地质矿产勘查开发局“四川可尔因花岗伟晶岩田重点锂矿区找矿突破研究(SCDKKJXM-2018002)”
详细信息
    作者简介: 张伟(1984-),男,高级工程师,研究方向为地质调查与矿产勘查
    通讯作者: 黄健(1971-),男,高级工程师,研究方向为矿产地质调查与勘查工作
  • 中图分类号: TD982

The C-H-O Isotopic Composition and Significance of Spodumene for Redamen Pegmatite Type Rare Metal Deposit in Western Sichuan

More Information
  • 热达门稀有金属矿床位于川西可尔因伟晶岩型矿田的南西部,文章在详细的矿床地质特征研究基础上,系统采集同一矿脉同一矿体不同标高(3540~3830 m)的矿石,分析测试了锂辉石单矿物中的C-H-O同位素组成以及不同矿物中的包裹体特征。矿物中包裹体主要以富液相包裹体为主,锂辉石中包裹体盐度集中于8%~20%,均一温度180~330℃,属于中-低盐度、中-高温成矿流体;石英中包裹体盐度集中于0%~8%,均一温度150~240℃,属于低盐度、低温流体。C-H-O同位素测试结果显示热达门稀有金属矿床中的锂辉石δD值为-97.5‰~-104.7‰(平均-102.8‰),相对于可尔因地区其他锂矿床,δD值明显偏小,δ18OH2O值为-0.34‰~2.88‰(平均1.032‰),表明成矿流体可能有大气降水的混入,并受到了围岩黑云母而长花岗岩体的影响。矿床中锂辉石的δ13CV-PDB值为-10‰~-16.6‰,平均-12.7‰,反映主成矿期碳的来源具有岩浆系统和大气降水系统的混合性质,与岩浆-地幔源(花岗岩、地幔多相体系)的低温蚀变有关,并可能混入部分由沉积有机物质经脱羧基作用(decarboxylation)生成CO2。通过对矿物C-H-O同位素及流体包裹体进行研究,进一步明确了成矿流体来源及演化过程。

  • 加载中
  • 图 1  可尔因伟晶岩矿田地质简图(据文献[7,11]修改)

    Figure 1. 

    图 2  热达门矿床地质简图

    Figure 2. 

    图 3  热达门矿床32号勘探线剖面简图

    Figure 3. 

    图 4  热达门矿床伟晶岩露头及镜下显微照片

    Figure 4. 

    图 5  包裹体盐度

    Figure 5. 

    图 6  包裹体均一温度

    Figure 6. 

    图 7  热达门稀有金属矿床成矿流体δD-δ18O组成

    Figure 7. 

    图 8  碳同位素组成

    Figure 8. 

    图 9  热达门稀有金属矿床锂辉石的δ18O-δ13C图解

    Figure 9. 

    表 1  热达门稀有金属矿床P32剖面采样情况

    Table 1.  P32 profile sampling situation of Redamen rare metal deposit

    序号工程名称矿体名称样号高程/m品位(Li2O/%)
    1ZK32-01I-3H2、H33793(2.38, 1.77)
    (平均2.08)
    2ZK32-02H8、H103735(1.85, 1.62)
    (平均1.74)
    3ZK32-07H8、H73678(1.28, 1.25)
    (平均1.27)
    4ZK32-03H3、H23615(1.51, 1.28)
    (平均1.40)
    5ZK32-04H10、H93540(2.12, 2.21)
    (平均2.17)
    下载: 导出CSV

    表 2  流体包裹体测试结果

    Table 2.  Fluid inclusion test results

    样品编号赋存矿物个数气液比/%均一温度/℃Th,CO2/℃盐度/%
    ZK32-01-H3石英1310~85169~30324.9~28.23.01~8.82
    锂辉石1110~35166~27129.1~29.38.00~12.32
    ZK32-02-H10石英910~40149~30726.41.91~7.92
    锂辉石1310~80179~33129.22.57~19.29
    ZK32-07-H7石英710~35146~29729.0~29.21.64~13.57
    锂辉石1820~25269~317\5.51~6.03
    ZK32-03-H3石英910~35189~33222.9~27.44.33~14.46
    锂辉石2410~15178~259\10.73~16.15
    ZK32-04-H10石英615~60197~33229.6~29.75.05~7.05
    锂辉石2910~60158~33825.9~30.47.59~17.87
    下载: 导出CSV

    表 3  可尔因矿田稀有金属矿床锂辉石C、H、O同位素组成

    Table 3.  Spodumene C, H, O isotopic composition of rare metal deposit in Keeryin ore field

    序号样号岩性矿床δ18OV-SMOW
    /‰
    δ18OV-PDB
    /‰
    δDV-SMOW
    /‰
    δ13CV-PDB
    /‰
    δ18OH2O
    /‰
    T
    /℃
    来源
    1KEYK-1白云母钠长石锂辉
    石伟晶岩
    可尔因16-14.5-89-75.64242据文献[17]
    2KEYK-1010.9-19.4-83-9.80.54242
    3KEYK-214.4-16.0-97-10.34.04242
    4KEYK-616.9-13.6-100-7.26.54242
    5LPD1H2钠长石锂辉
    石伟晶岩
    李家沟矿床晚期
    成矿阶段
    11.1-19.2-61.6-11.8-0.21220据文献[9]
    6LPD2H214-16.4-68.7-16.22.69220
    7LPD3H213-17.4-79.4-17.21.69220
    8LPD4H211.7-18.6-85.5-18.70.39220
    9ZK32-01钠长石锂辉
    石伟晶岩
    热达门床12.4-17.9-104.1-111.58231本文
    10ZK32-0211.2-19.1-97.5-10-0.34215
    11ZK32-0712.1-18.2-104.3-16.62.88273
    12ZK32-0311.6-18.8-102.5-140.43223
    13ZK32-0411.3-19.1-105.6-120.61234
    注:①锂辉石的δ18OH2O值通过平衡分馏公式方程1000 lnα=2.75×106/T2 [32]计算得出;②δ18OPDB=0.97002×δ18OSMOW-21.98 [33];③ δ18OV-SMOW/‰=1.03092×δ18OV-PDB/‰+30.92 [33]
    下载: 导出CSV
  • [1]

    费光春, 杨峥, 杨继忆, 等. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定: 来自LA-MC-ICP-MS锡石U-Pb定年的证据[J]. 地质学报, 2020, 94(3):836-849. FEI G C, YANG Z, YANG J Y, et al. Definition of metallogenic epoch of Dangba granite pegmatite type rare metal deposit in Marcand, Sichuan: evidence from LA-MC-ICP-MS cassiterite U-Pb dating[J]. Journal of Geology, 2020, 94(3):836-849. doi: 10.3969/j.issn.0001-5717.2020.03.012

    [2]

    张伟, 邹林, 范映武, 等. 四川金川县热达门锂辉石矿地质特征及矿床成矿模型浅析[J]. 四川地质学报, 2019, 39(增刊.):55-59. ZHANG W, ZOU L, FAN Y W, et al. Geological characteristics and metallogenic model of spodumene deposit in Jedaias, Jinchuan County, Sichuan Province[J]. Journal of Sichuan Geology, 2019, 39(Suppl.):55-59.

    [3]

    廖芝华, 周中国, 张洪平. 可尔因稀有金属矿床液态不混溶作用的地球化学特征证据[J]. 四川地质学报, 2019, 39(增刊.):60-69. LIAO Z H, ZHOU Z G, ZHANG H P. Evidence of geochemical characteristics of liquid immiscibility of Kerin rare metal deposit[J]. Journal of Sichuan Geology, 2019, 39(Suppl.):60-69.

    [4]

    G Fei, JF Menuge, C Chen, et al. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 2020:364.

    [5]

    李建康, 王登红, 张德会, 等. 川西伟晶岩型矿床的形成机制及大陆动力学背景[M]. 北京: 原子能出版社, 2007, 1-20.

    LI J K, WANG D H, ZHANG D H, et al. Formation mechanism and continental dynamic background of pegmatite deposits in western Sichuan [M]. Beijing: Atomic Energy Press, 2007, 1-20.

    [6]

    李金. 四川金川马场沟锂辉石矿床地质特征及成因分析[D]. 成都: 成都理工大学, 2018, 1-66.

    LI J. Geological characteristics and genesis analysis of Machanggou spodumene deposit in Jinchuan, Sichuan [D]. Chengdu: Chengdu University of Technology, 2018, 1-66.

    [7]

    古城会. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛, 2014, 29(1):59-65. GU C H. Mineralization law of spodumene deposit in the southeast dense area of Kelin pegmatite field in Sichuan province[J]. Geological Prospecting Thesis, 2014, 29(1):59-65. doi: 10.6053/j.issn.1001-1412.2014.01.007

    [8]

    王子平, 刘善宝, 马圣钞, 等. 四川阿坝州党坝超大型锂辉石矿床成矿规律及深部和外围找矿方向[J]. 地球科学, 2018, 43(6):2029-2041. WANG Z P, LIU S B, MA S C, et al. Metallogenic regularity of Dangba super-large spodumene deposit in Aba Prefecture, Sichuan Province and prospecting direction in deep and peripheral areas[J]. Earth Science, 2018, 43(6):2029-2041.

    [9]

    邓运, 费光春, 李剑, 等. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究[J]. 矿物岩石, 2018, 38(3):40-47. DENG Y, FEI G C, LI J, et al. Study on hydrocarbon oxygen isotope and metallogenic epoch of pegmatite type spodumene deposit in Lijiagou, Sichuan[J]. Minerals and Rocks, 2018, 38(3):40-47.

    [10]

    许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6):1091-1106. XU Z Q, WANG R C, ZHAO Z B, et al. On the tectonic setting of “hard rock type” large lithium ore belt in Chinese mainland[J]. Acta geologica Sinica, 2018, 92(6):1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001

    [11]

    唐文春, 段威, 邹林, 等. 川西可尔因地区伟晶岩型锂矿地球化学指标定位矿体的方法[J]. 地质力学学报, 2022, 28(5): 765-792.

    TANG W C, DUAN W, ZOU L, et al. A method for locating ore bodies by geochemical indexes of pegmatite-type lithium deposits in the Ke'eryin area, western Sichuan, China[J]. Journal of Geomechanics, 28(5): 765−792.

    [12]

    岳相元, 张贻, 周雄, 等. 川西可尔因矿集区稀有金属矿床成矿规律与找矿方向[J]. 矿床地质, 2019, 38(4):867-876. YUE X Y, ZHANG Y, ZHOU X, et al. Mineralization law and prospecting direction of rare metal deposits in Kelin ore concentration area, western Sichuan[J]. Deposit Geology, 2019, 38(4):867-876. doi: 10.16111/j.0258-7106.2019.04.012

    [13]

    Deschamps, Fabien, Benoit, et al. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)(Article)[J]. Journal of Petrology, 2017, 58(11):2221-2256. doi: 10.1093/petrology/egy007

    [14]

    许家斌, 费光春, 覃立业, 等. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义[J]. 地质与勘探, 2020, 56(2):346-358. XU J B, FEI G C, QIN L Y, et al. Cassiterite LA-MC-ICP-MS U-Pb dating and geological significance of Lijiagou Pegmatite-type rare metal deposit in Keelin ore field, Sichuan[J]. Geology and Exploration, 2020, 56(2):346-358.

    [15]

    马圣钞, 王登红, 刘善宝, 等. 综合勘查方法在硬岩型锂矿找矿中的应用—以马尔康稀有金属矿田加达锂矿为例[J]. 地质学报, 2020, 94(8):2341-2353. MA S C, WANG D H, LIU S B, et al. Application of comprehensive exploration method in hard rock lithium ore prospecting-taking Jiada lithium ore field in Marcand as an example[J]. Acta geologica Sinica, 2020, 94(8):2341-2353. doi: 10.3969/j.issn.0001-5717.2020.08.012

    [16]

    许志琴, 侯立玮, 王宗秀, 等. 中国松潘—甘孜造山带的造山过程[M]. 北京: 地质出版社, 1992, 20-70.

    XU Z Q, HOU L W, WANG Z X, et al. The orogenic process of Songpan-Ganzi orogenic belt in China [M]. Beijing: Geological Publishing House, 1992, 20-70.

    [17]

    李建康, 王登红, 付小方. 川西可尔因伟晶岩型稀有金属矿床的40Ar/39Ar年代及其构造意义[J]. 地质学报, 2006, 80(6):843-848. LI J K, WANG D H, FU X F. The 40Ar/39Ar age and tectonic significance of the rare metal deposit of Koeryin pegmatite type in western Sichuan[J]. Journal of Geology, 2006, 80(6):843-848. doi: 10.3321/j.issn:0001-5717.2006.06.006

    [18]

    马圣钞, 王登红, 刘善宝, 等. 川西可尔因锂矿田云母矿物化学及稀有金属成矿和找矿指示[J]. 矿床地质, 2019, 38(4):877-897. MA S C, WANG D H, LIU S B, et al. Mica mineral chemistry and rare metal mineralization and prospecting indicators in the Kelin lithium ore field, western Sichuan[J]. Deposit Geology, 2019, 38(4):877-897.

    [19]

    赵永久. 松潘-甘孜东部中生代中酸性侵入体的地球化学特征、岩石成因及构造意义[D]. 广州: 中国科学院广州地球化学研究所, 2007, 1-101.

    ZHAO Y J. Geochemical characteristics, petrogenesis and tectonic significance of mesozoic intermediate-acid intrusive bodies in the east of Songpan-Ganzi [D]. Guangzhou: Guangzhou Institute of Geochemistry, China Academy of Sciences, 2007, 1-101.

    [20]

    岳相元, 杨波, 周雄, 等. 川西地区热达门石英闪长岩锆石U-Pb年龄和岩石地球化学特征: 岩石成因与构造意义[J]. 现代地质, 2019, 33(5):1015-1024. YUE X Y, YANG B, ZHOU X, et al. Zircon U-Pb age and rock geochemical characteristics of Jedaias quartz diorite in western Sichuan: petrogenesis and tectonic significance[J]. Modern Geology, 2019, 33(5):1015-1024.

    [21]

    岳相元, 郭佳, 毛树林, 等. 川西太阳河黑云母二长花岗岩的锆石U-Pb年龄、岩石地球化学特征及其地质意义[J]. 矿物岩石地球化学通报, 2018, 37(6):142-1151. YUE X Y, GUO J, MAO S L, et al. Zircon U-Pb age, rock geochemical characteristics and geological significance of biotite monzonite granite in Taiyanghe, western Sichuan[J]. Bulletin of Mineral Rock Geochemistry, 2018, 37(6):142-1151. doi: 10.19658/j.issn.1007-2802.2018.37.084

    [22]

    Nie S Y, Yin A, Rowley D B, et al. Exhumation of the Dabie Shan ultra-high- pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China[J]. Geology, 1994, 22:999-1002.

    [23]

    Sengor A M C and Natalin B A. Paleotectonics of Asia: Fragments of a synthesis [A]. In: Yin A, Harrison T M. , eds. , The Tectonics of Asia [C]. Cambridge University Press, New York, 1996, 486-640.

    [24]

    Bruguier O, Lancelot J R, Malavieille J. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): Provenance and tectonic correlations[J]. Earth & Planetary Science Letters, 1997, 152(1-4):217-231.

    [25]

    时章亮, 张宏飞, 蔡宏明. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学, 2009, 34(4):569-584. SHI Z L, ZHANG H F, CAI H M. Genesis and tectonic significance of Marcand peraluminous granite in Songpan orogenic belt[J]. Earth Science, 2009, 34(4):569-584. doi: 10.3321/j.issn:1000-2383.2009.04.002

    [26]

    罗伟, 岳相元, 周雄, 等. 四川金川县列门地区土壤地球化学特征及找矿意义[J]. 矿产综合利用, 2022(1):1-7. LUO W, YUE X Y, ZHOU X, et al. Soil geochemical characteristics and prospecting significance in Liemen area, Jinchuan County, Sichuan Province[J]. Mineral Comprehensive Utilization, 2022(1):1-7.

    [27]

    廖远安, 姚学良. 金川—过铝多阶段花岗岩体演化特征及其与成矿关系[J]. 矿物岩石, 1992, 12(1):12-22. LIAO Y A, YAO X L. Evolution characteristics of Jinchuan-peraluminous granite body and its relationship with mineralization[J]. Minerals and Rocks, 1992, 12(1):12-22. doi: 10.19719/j.cnki.1001-6872.1992.01.003

    [28]

    王全伟, 梁斌, 朱兵, 等. 川西北壤塘地区西康群深海浊积砂岩沉积地球化学特征[J]. 地质地球化学, 2001, 29(4):82-85. WANG Q W, LIANG B, ZHU B, et al. Sedimentary geochemical characteristics of deep-sea turbidite sandstone of Xikang Group in Zamtang area, northwest Sichuan[J]. Geology and Geochemistry, 2001, 29(4):82-85.

    [29]

    Fei G C, Li B H, Yang J Y, et al. Geology, Fluid inclusion characteristics and H-O-C isotopes of large Lijiegou pegmatite spodumene deposit in Songpan-Garze fold belt, eastern Tiber: implications for ore genesis[J]. Resour Geol, 2018, 68(1):37-50. doi: 10.1111/rge.12145

    [30]

    Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochim Cosmochim Acta, 1963, 27:43-52. doi: 10.1016/0016-7037(63)90071-1

    [31]

    Coleman M L, Shepherd T J, Durham J J, et al. Reduction of water with zinc for hydrogen isotope analysis[J]. Anal Chem, 1982, 54:993-995. doi: 10.1021/ac00243a035

    [32]

    Javoy M. Stable isotopes and geothermometry[J]. J Geol Soc London, 1977, 133:609-639. doi: 10.1144/gsjgs.133.6.0609

    [33]

    Coplen T B, Kendall C, Hopple J. Comparison of stable isotope reference samples[J]. Nature, 1983, 302:236-238. doi: 10.1038/302236a0

    [34]

    Taylor S R, Mclennan S H. The continental crust: its composition and envolution[J]. Oxford:Blackwell, 1985:117-140.

    [35]

    杨学明, 杨晓勇, 陈双喜. 译. 岩石地球化学[M]. 合肥: 中国科学技术大学出版社, 2000, 206-227.

    YANG X M, YANG X Y, CHEN S X. Rock geochemistry[M]. Hefei: China University of Science and Technology Press, 2000, 206-227.

    [36]

    李培忠, 虞福基, 刘德平, 等. 黑龙江碾子山晶洞碱性花岗岩氢同位素组成与岩浆去气作用[J]. 地球化学, 1992(1):70-76. LI P Z, YU F J, LIU D P, et al. Hydrogen isotope composition and magma degassing of alkaline granite in Nianzishan, Heilongjiang[J]. Geochemistry, 1992(1):70-76. doi: 10.3321/j.issn:0379-1726.1992.01.009

    [37]

    李培忠, 申佑林, 李春岭, 等. 黑龙江碾子山晶洞碱性花岗岩δ18O等值线图与古化石热水体系研究[J]. 中国科学(B辑), 1990(8):862-869. LI P Z, SHEN Y L, LI C L, et al. δ18O contour map of alkaline granite in Nianzishan, Heilongjiang Province and study on fossil hot water system[J]. China Science (Series B), 1990(8):862-869.

    [38]

    李培忠, 于津生. 山海关晶洞碱性花岗岩H、O同位素地球化学研究[J]. 科学通报, 1989(1):51-52. LI P Z, YU J S. H and O isotopic geochemistry of alkaline granite in Shanhaiguan geode[J]. Science Bulletin, 1989(1):51-52.

    [39]

    李培忠. 就“关于碱性花岗岩H同位素组成及其有关问题的讨论”有关问题的回答[J]. 地球化学, 1995, 24(2): 196-197.

    LI P Z. Answers to some questions about “Discussion on H isotope composition of alkaline granite and related problems”[J]. Geochemistry, 1995, 24(2): 196-197.

    [40]

    郑永飞, 傅斌, 龚冰. 大别造山带超高压变质岩稳定同位素地球化学[J]. 安徽地质, 2000(3):161-165. ZHENG Y F, FU B, GONG B. Stable isotope geochemistry of ultrahigh-pressure metamorphic rocks in Dabie orogenic belt[J]. Anhui Geology, 2000(3):161-165.

    [41]

    温春齐, 多吉. 矿床学研究方法[M]. 成都: 四川科技出版社, 2009, 123-136.

    WEN C Q, DUO J. Research methods of mineralogy [M]. Chengdu: Sichuan Science and Technology Press, 2009, 123-136.

    [42]

    Hoefs J. Stable isotope geochemistry, 6th revised and updated edition[J]. Springer-Verlag Berlin, 2008:136-150.

    [43]

    Clark I and Fritz P. Environmental isotopes in hydrogeology[M]. New York: Lewis Publishers, 1997: 328.

    [44]

    Faure G. Principles of isotope Geology [M]. New York: 2nd edn. John Wiley and Sons, 1986: 589.

    [45]

    刘家军, 何明勤, 李志明, 等. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质, 2004, 23(1):1-10. LIU J J, HE M Q, LI Z M, et al. Carbon and oxygen isotopic composition of silver-copper polymetallic ore concentration area in Baiyangping, Yunnan and its significance[J]. Geology of Deposits, 2004, 23(1):1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001

    [46]

    刘建明, 刘家军. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 1997, 17(4):448-456. LIU J M, LIU J J. Basin fluid genetic model of micro disseminated gold deposits in the golden triangle area of Yunnan, Guizhou and Guangxi[J]. Journal of Minerals, 1997, 17(4):448-456. doi: 10.3321/j.issn:1000-4734.1997.04.012

    [47]

    毛景文, 赫平, 丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质, 2002, 21(2):121-127. MAO J W, HE P, DING T P. Carbon, oxygen and hydrogen isotopic evidence of mantle fluid participating in the metallogenic process during the formation of Jiaodong gold deposit[J]. Deposit Geology, 2002, 21(2):121-127. doi: 10.3969/j.issn.0258-7106.2002.02.004

  • 加载中

(9)

(3)

计量
  • 文章访问数:  597
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2022-10-18
刊出日期:  2023-02-25

目录