Properties of Coal Gangue and Magnetic Separation of Iron and Titanium by Magnetic Seed Method
-
摘要:
为提高煤系高岭土煤矸石资源利用率,本文以内蒙准格尔黑岱沟地区的煤矸石为研究对象,对其中蕴含的煤系硬质高岭土进行分选除铁、除钛研究。通过采用X-射线衍射(XRD)谱、X射线荧光(XRF)光谱,扫描电镜(SEM)及显微镜测试从化学成分、微观形貌和矿物组成结构方面对煤矸石进行工艺矿物学分析。实验采用不同磁种对含铁、钛的矿物进行高梯度磁选,单因素实验得出以磁铁矿粉为磁种优于人造铁氧体。通过正交实验表明:磁选电流6 A、给矿记时20 s、矿浆浓度45%为较佳实验条件,此时除铁率为35.63%,除钛率为39.29%。最终产品煅烧后白度为80.96%,达到橡塑工业用煅烧高岭土白度要求。
Abstract:In order to improve the utilization rate of coal measure kaolinite gangue resources, this paper takes coal measure kaolinite in Heidaigou area of Inner Mongolia as the research object, and studies the iron and titanium removal of coal measure hard kaolinite contained in it. The process mineralogy of coal gangue was analyzed by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM) and microscope test from the aspects of chemical composition, microstructure and mineral composition. Different magnetic species were used to conduct high-gradient magnetic separation of iron-bearing and titanium-bearing minerals, and the single-factor experiment showed that magnetite powder was superior to artificial ferrite. The orthogonal experiment shows that magnetic separation current 6 A, ore timing 20 s and slurry concentration 45% are the best experimental conditions, and the iron removal rate is 35.63% and the titanium removal rate is 39.29%. The whiteness of the final product is 80.96% after calcination, which meets the whiteness requirement of calcined kaolin used in rubber and plastic industry.
-
表 1 实验仪器与试剂
Table 1. Test instruments and reagents
仪器名称 仪器/试剂型号 X射线荧光光谱仪 ESCALB 250Xi X射线衍射仪 D/Max-IIIA 扫描电子显微镜 Quanta250 透射偏光显微镜 XP-100 湿式高梯度磁选机 RK/CSQ-50×70 焦磷酸钠 AR 草酸 AR 磁铁矿粉 45 μm 人造铁氧体 45 μm 表 2 元素分析
Table 2. Elemental analysis
Al2O3 SiO2 Fe2O3 TiO2 SO3 CaO 35.02 36.2 0.87 1.07 0.22 0.21 K2O ZrO2 P2O5 Cr2O3 ZnO LOI 0.17 0.04 0.03 0.03 0.02 25.73 表 3 不同磁选电流实验结果
Table 3. Test results of different magnetic separation currents
磁选电流/A 磁铁矿粉磁选产物 化学组分/% 除铁率/% 除钛率/% 人造铁氧体磁选产物 化学组分/% 除铁率/% 除钛率/% 铁 钛 铁 钛 2 精矿 0.68 0.76 21.83 28.97 精矿 0.67 0.78 22.98 27.10 4 精矿 0.61 0.74 29.88 30.84 精矿 0.64 0.73 26.43 31.77 6 精矿 0.55 0.67 36.78 37.38 精矿 0.57 0.68 34.48 36.44 表 4 不同磁选浓度实验结果
Table 4. Test results of different magnetic separation concentrations
磁选浓度/% 磁铁矿粉磁选产物 化学组分/% 除铁率/% 除钛率/% 人造铁氧体磁选产物 化学组分/% 除铁率/% 除钛率/% 铁 钛 铁 钛 40 精矿 0.54 0.68 37.93 36.44 精矿 0.57 0.68 35.63 36.64 45 精矿 0.61 0.74 29.88 30.84 精矿 0.64 0.73 26.43 31.77 50 精矿 0.56 0.67 35.63 37.38 精矿 0.67 0.76 29.88 28.97 表 5 不同磁选给矿时间实验结果
Table 5. Test results of different magnetic separation feeding time
磁选给矿时间/S 磁铁矿粉磁选产物 化学组分% 除铁率/% 除钛率/% 人造铁氧体磁选产物 化学组分% 除铁率/% 除钛率/% 铁 钛 铁 钛 10 精矿 0.63 0.79 27.58 26.16 精矿 0.68 0.82 21.83 23.36 15 精矿 0.61 0.74 29.88 30.84 精矿 0.64 0.73 26.43 31.77 20 精矿 0.55 0.66 36.78 38.32 精矿 0.54 0.69 37.93 35.51 表 6 因子水平
Table 6. Factor levels
编号 A 磁选电流/A B 磁选给矿时间/s C 磁选浓度/% 1 2 10 40 2 4 15 45 3 6 20 50 表 7 正交实验结果
Table 7. Orthogonal test results
组号 A磁选电流/A B给矿时间/s C 磁选浓度/% 除铁率/% 除钛率/% 计算除杂率/% 1 1 1 1 19.44 23.59 21.73 2 1 2 2 22.93 26.97 25.16 3 1 3 3 24.18 31.57 28.26 4 2 1 2 26.58 25.76 26.13 5 2 2 3 29.28 32.54 31.08 6 2 3 1 32.73 31.29 31.94 7 3 1 3 27.88 26.42 27.07 8 3 2 1 29.88 30.84 30.41 9 3 3 2 35.63 39.29 37.65 k1 25.05 24.98 28.02 k2 29.71 28.88 29.64 k3 31.71 32.61 28.80 R 6.66 7.63 1.62 -
[1] 刘玉海, 李海明. 四川某煤系高岭土工艺矿物学研究[J]. 矿产综合利用, 2019(4):94-97. LIU Y H, LI H M. Study on process mineralogy of coal-series kaolin from Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4):94-97. doi: 10.3969/j.issn.1000-6532.2019.04.020
[2] 王涛, 王晓平, 张新. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4):21-25. WANG T, WANG X P, ZHANG X. Summary of occurrence and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004
[3] Tao Sun, Keyu Ge, Guiming Wang, et al. Comparing pozzolanic activity from thermal-activated water-washed and coal-series kaolin in Portland cement mortar[J]. Construction and Building Materials, 2019:227.
[4] 郑永明, 陈禄政, 官长平, 等. 离心高梯度磁选钛铁矿的实验研究[J]. 昆明理工大学学报(自然科学版), 2017, 42(4):32-37. ZHENG Y M, CHEN L Z, GUAN C P, et al. Experimental research on centrifugal high gradient magnetic separation of ilmenite[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(4):32-37.
[5] HUANG Teng, LEI Shaomin, LIU Mochou, et al. Dry separation of iron minerals from low-grade coal-series kaolin[J]. Journal of Wuhan University of Technology Materials Science Edition. 2015, 30(5): 935-940.
[6] 蒙臻明, 柯善军, 祝乐民, 等. 高岭土原矿除铁工艺的研究[J]. 陶瓷, 2017(6):50-56. MENG Z M, KE S J, ZHU L M, et al. Study on iron removal process of kaolinite origin[J]. Ceramics, 2017(6):50-56. doi: 10.3969/j.issn.1002-2872.2017.06.011
[7] 刘立伟, 赵礼兵, 李国峰, 等. 某钒钛磁铁精矿深度还原-磁选试验研究[J]. 矿产综合利用, 2020(6):56-63. LIU L W, ZHAO L B, LI G F, et al. Study on coal-based reduction followed by magnetic separation of a vanadium-titanium magnetite concentrate[J]. Multipurpose Utilization of Mineral Resources, 2020(6):56-63. doi: 10.3969/j.issn.1000-6532.2020.06.010
[8] 柳林, 王威, 刘红召, 等. 磁化焙烧—磁选回收某褐铁矿中铁的试验研究[J]. 矿产综合利用, 2019(4):33-37. LIU L, WANG W, LIU H Z, et al. Research on recovery of iron from limonite by magnetization roasting and magnetic separation[J]. Multipurpose Utilization of Mineral Resources, 2019(4):33-37. doi: 10.3969/j.issn.1000-6532.2019.04.006
[9] 肖敏, 邱小英, 蓝桥发. 高磷鲕状赤铁矿金属化还原焙烧-磁选-熔分新工艺研究[J]. 矿产综合利用, 2020(5):101-114. XIAO M, QIU X Y, LAN Q F. Study on the new technology of reduction roasting, magnetic separation and melting of high phosphorus oolitic hematite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-114. doi: 10.3969/j.issn.1000-6532.2020.05.014
[10] 郭春雷, 王维维, 金海龙, 等. 高岭土除铁增白研究进展[J]. 现代矿业, 2019, 35(1):96-101. GUO C L, WANG W W, JIN H L, et al. Advances in Defertilizing of Kaolin[J]. Modern Mining, 2019, 35(1):96-101. doi: 10.3969/j.issn.1674-6082.2019.01.022