综合利用低品位氧化锌矿的技术现状及研究进展

王吉凤, 付恒毅, 闫晓彤, 王鹏程, 王乐. 综合利用低品位氧化锌矿的技术现状及研究进展[J]. 矿产综合利用, 2023, 44(2): 131-140. doi: 10.3969/j.issn.1000-6532.2023.02.022
引用本文: 王吉凤, 付恒毅, 闫晓彤, 王鹏程, 王乐. 综合利用低品位氧化锌矿的技术现状及研究进展[J]. 矿产综合利用, 2023, 44(2): 131-140. doi: 10.3969/j.issn.1000-6532.2023.02.022
Wang Jifeng, Fu Hengyi, Yan Xiaotong, Wang Pengcheng, Wang Le. Present Situation and Research Progress of Comprehensive Utilization of Low Grade Zinc Oxide Ore[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 131-140. doi: 10.3969/j.issn.1000-6532.2023.02.022
Citation: Wang Jifeng, Fu Hengyi, Yan Xiaotong, Wang Pengcheng, Wang Le. Present Situation and Research Progress of Comprehensive Utilization of Low Grade Zinc Oxide Ore[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 131-140. doi: 10.3969/j.issn.1000-6532.2023.02.022

综合利用低品位氧化锌矿的技术现状及研究进展

  • 基金项目: 国家自然科学基金资助项目(52174314),河北省高等学校科学技术研究项目(ZD2021331)
详细信息
    作者简介: 王吉凤(2000-),女,硕士,研究方向为材料成型及控制工程,锂电池
    通讯作者: 王乐(1985-),男,讲师,研究方向为矿产资源综合利用
  • 中图分类号: TF803

Present Situation and Research Progress of Comprehensive Utilization of Low Grade Zinc Oxide Ore

More Information
  • 最新的十四五计划提出,我国鼓励对伴生矿、低品位矿和尾矿等矿山资源的综合利用,加强资源综合利用是改变粗放型经济增长,实现循环经济与绿色发展的重要手段。随着锌、铅等有价金属需求量的增加以及有限高品位锌矿资源的日益枯竭,综合回收利用中低品位氧化锌矿中的有价组分迫在眉睫。首先,本文从焙烧法和浸出法两个方面对低品位氧化锌矿资源综合利用的现有工艺技术原理、工艺流程及成效进行了综述性分析,提出了各项工艺在应用中存在的问题。其次,对微生物湿法冶金技术综合利用低品位氧化锌矿及含锌废料的研究现状进行简要分析。最后,对低品位氧化锌矿综合利用的前景进行了展望:微生物湿法冶金技术尤其是微生物-化学联合工艺技术,因其具有既能实现有价组分的高效回收,又能实现经济效益、绿色环保双赢的特点,将是未来研究的重点方向。

  • 加载中
  • 图 1  碱焙烧法工艺流程

    Figure 1. 

    图 2  硫酸铵焙烧法工艺流程

    Figure 2. 

    图 3  浓硫酸焙烧法工艺流程

    Figure 3. 

    图 4  硫酸浸出法工艺流程

    Figure 4. 

    图 5  堆浸法工艺流程

    Figure 5. 

    图 6  深层生物原位浸出工艺

    Figure 6. 

    表 1  微生物浸出技术处理含锌废料的部分研究结果[17-21]

    Table 1.  Some research results of the treatment of zinc-containing waste by microbial leaching technology

    含锌材料细菌种类技术条件锌浸出率引用
    废弃锌-锰电池硫氧化硫杆菌;费氏钩端螺旋体浸出温度33℃,pH值 1.9,纸浆密度5%,浸出时间13 d85.1%[17]
    铅和硫化锌尾矿氧化铁硫杆菌浸出温度30℃,pH值 2.0,纸浆密度5%,浸出时间50 d97.85%[18]
    锌浸渣硫氧硫杆菌浸出温度30℃,pH值 3.3,纸浆密度2%,浸出时间45 d79%[19]
    含锌铜矿石硫代硫杆菌,费氏钩端螺旋体浸出温度30℃,pH 值1.5,浆密度10%,浸出时间6 d74.35%[20]
    废刹车片硫氧化硫杆菌,氧化亚铁硫杆菌浸出温度30℃,pH值 1.0,浆密度4%,浸出时间9 d72%[21]
    下载: 导出CSV

    表 2  微生物-化学联合浸出实验与其中单独实验的对比

    Table 2.  Comparison of microbial - chemical leaching experiments with individual experiments

    实验类型实验条件铜浸出率
    酸浸试验矿样粒度-0.080 mm,矿浆浓度20%,搅拌浸出60~90 min17.13%
    单独的化学浸出实验一定浓度的Fe3+,浸出48 h53.82%
    单独的微生物浸出实验Fe2+浓度9 g/L,矿浆浓度10%,温度30℃,接种量10%、粒度-0.080 mm40%
    微生物-化学联合浸出实验在单独生物浸出(较优浸出条件下)的初期添加浓度为80 g/L的Fe3+,浸出时间为8 d84.36%
    下载: 导出CSV
  • [1]

    洪磊. 云南某氧化铅锌矿可选性试验研究[J]. 矿产综合利用, 2019(4):68-72. HONG L. Study on the separability of lead and zinc oxide ores from Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2019(4):68-72. doi: 10.3969/j.issn.1000-6532.2019.04.014

    [2]

    许晓阳, 李黎婷, 谢洪珍, 等. 低品位氧化锌矿新工艺研究[J]. 矿产综合利用, 2017(5):52-54+62. XU X Y, LI L T, XIE H Z, et al. Study on new technology of low grade zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2017(5):52-54+62. doi: 10.3969/j.issn.1000-6532.2017.05.011

    [3]

    申亚芳, 张馨圆, 王乐, 等. 氧化锌矿处理方法现状[J]. 矿产综合利用, 2020(2):23-28. SHEN Y F, ZHANG X Y, WANG L, et al. Preparation of zinc and its compounds from zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):23-28. doi: 10.3969/j.issn.1000-6532.2020.02.004

    [4]

    许大洪, 刘小妹, 崔伟勇, 等. 缅甸某难选锌氧化矿浮选工艺[J]. 矿产综合利用, 2021(2):17-22. XU D H, LIU X M, CUI W Y, et al. Flotation technology of a refractory zinc oxide ore in Burma[J]. Multipurpose Utilization of Mineral Resources, 2021(2):17-22. doi: 10.3969/j.issn.1000-6532.2021.02.004

    [5]

    李文超, 王海军, 王雪峰, 等. 法规政策标准精准支撑, 开发利用水平稳步提升[N]. 中国自然资源报, 2020-12-17(003).

    LI W C, WANG H J, WANG X F, et al. Steady progress has been made in the precise support of regulations, policies and standards for development and utilization[N]. China Natural Resources Journal, 2020-12-17(3).

    [6]

    安久长. 浅析低碳经济模式下开展有色金属矿产资源综合利用的价值[J]. 信息记录材料, 2021, 22(1):243-244. AN J C. Analysis on the value of comprehensive utilization of nonferrous metal mineral resources under the low carbon economic model[J]. Information Recording Material, 2021, 22(1):243-244. doi: 10.16009/j.cnki.cn13-1295/tq.2021.01.168

    [7]

    陈兵, 申晓毅, 顾惠敏, 等. 碱焙烧法综合利用低品位氧化锌矿[J]. 矿产综合利用, 2016(5):30-33. CHEN B, SHEN X Y, GU H M, et al. Comprehensive utilization of low grade zinc oxide ore by alkaline roasting[J]. Multipurpose Utilization of Mineral Resources, 2016(5):30-33.

    [8]

    邵鸿媚, 申晓毅, 孙毅, 等. 硫酸铵焙烧法综合利用低品位氧化锌矿[J]. 矿产综合利用, 2016(2):70-73. SHAO H M, SHEN X Y, SUN Y, et al. Comprehensive utilization of low grade zinc oxide ore by ammonium sulfate roasting[J]. Multipurpose Utilization of Mineral Resources, 2016(2):70-73. doi: 10.3969/j.issn.1000-6532.2016.02.016

    [9]

    申晓毅, 邵鸿媚, 顾惠敏, 等. NaOH焙烧Zn2SiO4反应机理(英文)[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9):1878-1886. SHEN X Y, SHAO H M, GU H M, et al. Reaction mechanism of NaOH roasting Zn2SiO4[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9):1878-1886. doi: 10.1016/S1003-6326(18)64833-2

    [10]

    王乐. 低品位氧化锌矿提取铅锌的研究[D]. 沈阳: 东北大学, 2017.

    WANG L. Study on extraction of lead and zinc from low grade zinc oxide ore[D]. Shenyang: Northeastern University, 2017.

    [11]

    杨斌. 对湿法炼锌中热酸浸出-黄钾铁矾工艺的探讨[J]. 甘肃冶金, 2010, 32(3):56-58. YANG B. Discussion on hot acid leaching-jarosite process in hydrometallurgical zinc smelting[J]. Gansu Metallurgy, 2010, 32(3):56-58. doi: 10.3969/j.issn.1672-4461.2010.03.016

    [12]

    王磊, 徐智达, 申晓毅. 中低品位氧化锌矿综合利用试验研究[J]. 矿产综合利用, 2019(2):37-41. WANG L, XU Z D, SHEN X Y. Experimental study on comprehensive utilization of middle and low grade zinc oxide ore[J]. Comprehensive Utilization of Mineral Resources, 2019(2):37-41. doi: 10.3969/j.issn.1000-6532.2019.02.007

    [13]

    王振银, 高文成, 温建康, 等. 锌浸出渣有价金属回收及全质化利用研究进展[J]. 工程科学学报, 2020, 42(11):1400-1410. WANG Z Y, GAO W C, WEN J K, et al. Research progress in recovery and utilization of valuable metals from zinc leaching residue[J]. Chinese Journal of Engineering, 2020, 42(11):1400-1410.

    [14]

    水浩东. 废酸堆浸氧化铜锌矿工艺[J]. 有色矿冶, 2003(1):29-30+36. SHUI H D. Process of waste acid heap leaching copper-zinc oxide ore[J]. Nonferrous Mining and Metallurgy, 2003(1):29-30+36. doi: 10.3969/j.issn.1007-967X.2003.01.008

    [15]

    Yang Z H, Zhang Z, Chai L Y, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90[J]. Journal of Hazardous Materials, 2016, 3(1):145-152.

    [16]

    Diaz M A, De Ranson I U, Dorta B, et al. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contamin Int[J]. Soil and Sediment Contamination:An International Journal, 2015, 24(1):16-29. doi: 10.1080/15320383.2014.907239

    [17]

    牛志睿. 高固液比下废旧锌锰电池生物淋沥的特性、机理和资源化利用[D]. 北京: 北京理工大学, 2016.

    NIU Z R. Characteristics, mechanism and resource utilization of bioleaching of Waste Zn Mn batteries at high solid-liquid ratio[D]. Beijing: Beijing University of Technology, 2016.

    [18]

    叶茂友. 铅锌硫化尾矿中金属的生物浸出行为及浸出机理的研究[D]. 广州: 广东工业大学, 2017.

    YE M Y. Bioleaching behavior and leaching mechanism of metals from lead zinc sulfide tailings[D]. Guangzhou: Guangdong University of Technology, 2017.

    [19]

    Sethurajan M, Lens P, Rene E R, et al. Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil)[J]. Journal of Chemical Technology & Biotechnology, 2017.

    [20]

    Sajjad, Wasim, Zheng, et al. Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria[J]. Extremophiles Life Under Extreme Conditions, 2018.

    [21]

    Zhang M, Guo X, Tian B, et al. Improved bioleaching of copper and zinc from brake pad waste by low-temperature thermal pretreatment and its mechanisms[J]. Waste Management, 2019, 87:629-635. doi: 10.1016/j.wasman.2019.02.047

    [22]

    Haschke M, Ahmadian J, Zeidler L, et al. In-situ recovery of critical technology elements[J]. Procedia Engineering, 2016, 138:248-257. doi: 10.1016/j.proeng.2016.02.082

    [23]

    Pakostova E, Grail B M, Johnson D B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore[J]. Miner Eng, 2017, 106:102. doi: 10.1016/j.mineng.2016.08.028

    [24]

    陈志红. 低品位氧化锌矿资源化利用的工业生产研究[D]. 西安: 西安建筑科技大学, 2017.

    CHEN Z H. Study on industrial production of resource utilization of low grade zinc oxide ore[D]. Xi'an: Xi'an University of Architecture and Technology, 2017.

    [25]

    Dong S H, Yun C, Ping X, et al. Study on the pre-treatment of oxidized zinc ore prior to flotation[J]. Int J Miner Metall Mater 2018, 25(2): 117-122.

    [26]

    Frenay J. Leaching of oxidized zinc ores in various media[J]. Hydrometallurgy, 1985, 15(2):243-253. doi: 10.1016/0304-386X(85)90057-X

    [27]

    王振银, 高文成, 温建康, 等. 锌浸出渣有价金属回收及全质化利用研究进展[J]. 工程科学学报, 2020, v.42(319):14-24. WANG Z Y, GAO W C, WEN J K, et al. Research progress in recovery and utilization of valuable metals from zinc leaching residue[J]. Journal of Engineering Sciences, 2020, v.42(319):14-24.

    [28]

    张婧. 化学—生物联合浸出次生硫化铜精矿的研究[D]. 昆明: 云南大学, 2015.

    ZHANG J. Study on the combined chemical-biological leaching of secondary copper sulfide concentrate[D]. Kunming: Yunnan university, 2015.

    [29]

    黄玉霞. 生物—化学法回收电解锰废渣中锰的工艺及机理探讨[D]. 长沙: 湖南大学, 2011.

    HUANG Y X. Study on the process and mechanism of recovery of manganese from electrolytic manganese waste residue by bio-chemical metho[D]. Changsha: Hunan university, 2011.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  853
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2021-02-03
刊出日期:  2023-04-25

目录