铜造锍熔炼过程重金属烟尘特性及结瘤控制技术进展

谭少松, 马帅, 樊友奇, 朱金鑫, 陈世梁. 铜造锍熔炼过程重金属烟尘特性及结瘤控制技术进展[J]. 矿产综合利用, 2023, 44(2): 150-158. doi: 10.3969/j.issn.1000-6532.2023.02.024
引用本文: 谭少松, 马帅, 樊友奇, 朱金鑫, 陈世梁. 铜造锍熔炼过程重金属烟尘特性及结瘤控制技术进展[J]. 矿产综合利用, 2023, 44(2): 150-158. doi: 10.3969/j.issn.1000-6532.2023.02.024
Tan Shaosong, Ma Shuai, Fan Youqi, Zhu Jinxin, Chen Shiliang. Characteristics of Heavy Metal Dusts in the Copper Matte Smelting Process and Progress in Accerations Control Technology[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 150-158. doi: 10.3969/j.issn.1000-6532.2023.02.024
Citation: Tan Shaosong, Ma Shuai, Fan Youqi, Zhu Jinxin, Chen Shiliang. Characteristics of Heavy Metal Dusts in the Copper Matte Smelting Process and Progress in Accerations Control Technology[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(2): 150-158. doi: 10.3969/j.issn.1000-6532.2023.02.024

铜造锍熔炼过程重金属烟尘特性及结瘤控制技术进展

  • 基金项目: 国家自然科学基金项目(51404004)
详细信息
    作者简介: 谭少松(1996-),男,硕士研究生,研究方向为火法冶金烟尘形成与结瘤控制
    通讯作者: 樊友奇(1981-),男,博士,副教授,研究方向为火法冶金过程理论基础及技术研究
  • 中图分类号: TD982;TF811

Characteristics of Heavy Metal Dusts in the Copper Matte Smelting Process and Progress in Accerations Control Technology

More Information
  • 造锍熔炼作为火法炼铜的核心工序之一,其处理过程产生携带有大量含Cu、Pb、Zn、As等有害重金属烟尘及高SO2浓度的高温烟气。工业上,受烟气系统各部位温度场和气氛改变的影响,烟尘性质会逐渐变化,并在重力和静电场作用下与烟气逐步分离。部分高温烟尘会粘附于上升烟道和余热锅炉内壁或换热管上,形成坚硬的结瘤物,造成锅炉换热效率降低、气流通道口截面减小等问题,增加了有害重金属烟尘的环境污染风险及连续化生产成本。因此,研究铜冶炼过程烟尘排放特性及粘结行为,开发新型烟尘结瘤控制技术成为行业关注的焦点。本文综述了不同铜冶炼工艺中烟气处理系统各个阶段的烟尘及结瘤物物性特征,归纳解析其成分、物相变化规律及结瘤形成机理,对比分析了工业上现有结瘤控制技术现状,并做出评述及提出相关建议。

  • 加载中
  • 图 1  烟气净化系统烟尘的化学成分变化规律

    Figure 1. 

    图 2  烟气系统不同部位的结瘤物物相特点

    Figure 2. 

    图 3  烟尘结瘤物降温过程结晶路径 [29]

    Figure 3. 

    表 1  烟气净化系统烟尘典型化学组成/ %

    Table 1.  Chemical compositions of dusts in flue gas cleaning system

    冶炼厂炉型位置CuFePbZnAsSSiO2参考文献
    Kosaka闪速炉上升烟道10-2031-422-37-9/6-94-7[12]
    余热锅炉18-2122-258-128-97-93-4
    静电除尘器12-1410-1215-199-149-101-1.5
    Kosaka余热锅炉12.611.615.97.91.79.0/[12]
    静电除尘器10.28.921.62.79.3
    Kennecott静电除尘器28.719.90.80.91.77.48.4[12]
    Bulgarian余热锅炉22-2618-300.1-2.10.5-4.4/3-148-12[13]
    A冶炼厂余热锅炉23.824.86.13.3/10.89.9[14]
    阳谷祥光余热锅炉29.218.33.62.82.515.8/[15]
    静电除尘器25.616.62.93.34.215.9/
    江西贵溪余热锅炉17.413.70.34.74.110.54.1[16]
    Naoshima三菱炉余热锅炉44.17.13.42.01.7//[17]
    Naoshima静电除尘器1431042.7//
    Kidd Creek静电除尘器10.66.026.221.31.8//[13]
    国内B冶炼厂底吹炉余热锅炉27.715.25.42.67.913.6/[15]
    静电除尘器19.72.212.22.214.314.1/
    中原黄金余热锅炉33.42.93.11.1/14.61.5[18]
    注:“/”表示文献中未提及
    下载: 导出CSV

    表 2  不同位置烟尘的物相组成

    Table 2.  Phase composition of dusts at different positions

    冶炼厂炉型上升烟道余热锅炉静电除尘器参考文献
    Kosaka闪速炉Cu2S、ZnO、Fe2O3、Fe3O4PbS、CuFe2O4、Fe3O4PbSO4、ZnSO4、Cu2SO4、Fe3O4[12]
    Kennecott闪速炉//PbSO4、ZnSO4、Cu2SO4[12]
    Kidd creek三菱炉/Cu2O、CuFe2O4、PbSO4、ZnSO4、Cu2SO4PbSO4、ZnSO4、Cu2SO4[12]
    Naoshima三菱炉PbS、Cu2SCu2S、Cu2SO4、CuFe2O4PbSO4、ZnSO4、Cu2SO4[17]
    Ashio闪速炉/As2O5、Cu2S、PbS、Cu2SO4、Fe3O4/[19]
    Noranda诺兰达炉//PbSO4、ZnSO4、Cu2SO4、Fe3O4[20]
    注:“/”表示文献中未提及
    下载: 导出CSV
  • [1]

    杨俊奎, 徐斌, 马永鹏, 等. 铜冶炼开路烟尘综合回收研究现状[J]. 矿产综合利用, 2019(5):9-16. YANG J K, XU B, MA Y P, et al. Research status of comprehensive recovery of open-circuit dusts in copper smelter[J]. Multipurpose Utilization of Mineral Resources, 2019(5):9-16. doi: 10.3969/j.issn.1000-6532.2019.05.003

    [2]

    吕旭龙, 衷水平, 印万忠, 等. 某铜冶炼企业冶炼炉渣配矿浮选试验研究[J]. 矿产综合利用, 2019(1):114-118. LV X L, ZHONG S P, YIN W Z, et al. Experimental study on flotation of different proportion smelter slag in a copper smelting enterprise[J]. Multipurpose Utilization of Mineral Resources, 2019(1):114-118. doi: 10.3969/j.issn.1000-6532.2019.01.025

    [3]

    余 彬, 张 鑫, 王礼珊. 铜冶炼急冷转炉渣与缓冷电炉渣混合浮选生产实践[J]. 矿产综合利用, 2019(1):127-129. YU B, ZHANG X, WANG L S. Production practice of the mixed flotation of the copper smelting quench slag and the slow-cooling electric slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1):127-129. doi: 10.3969/j.issn.1000-6532.2019.01.028

    [4]

    李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的试验研究[J]. 矿产综合利用, 2020(2):145-150. LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026

    [5]

    Samuelsson C. Controlled dust separation, Theoretical and experimental study of the possibilities of controlled dust separation in copper producing processes[D]. Luleå University of Technology, 1999.

    [6]

    Samuelsson C. Characterization of copper smelter dusts[J]. CIM Bulletin, 2005, 94(1051):111-115.

    [7]

    Kang Y C, Park S S. Making improvements in smelting capacity at Onsan copper smelter[J]. JOM, 1997, 49(10):44-46. doi: 10.1007/BF02914741

    [8]

    周俊, 陈卓, 周孑民. 闪速炼铜中烟尘的形成过程[J]. 有色金属(冶炼部分), 2020(2):1-8. ZHOU J, CHEN Z, ZHOU J M. Process of dust generation in copper flash smelting[J]. Nonferrous Metals(Extractive Metallurgy), 2020(2):1-8.

    [9]

    张荣良, 丘克强, 谢永金, 等. 铜冶炼闪速炉烟尘氧化浸出与中和脱砷[J]. 中南大学学报(自然科学版), 2006, 37(1):73-78. ZHANG R L, QIU K Q, XIE Y J, et al. Treatment process of dust from flash smelting furnace at copper smelter by oxidative leaching and dearsenifying process from leaching solution[J]. Journal of Central South University(Science and Technology), 2006, 37(1):73-78.

    [10]

    Steinacker S, Antrekowitsch J. Thermodynamic considerations for primary copper flue dust[J]. Erzmetall, 2015, 68(6):328-335.

    [11]

    Samuelsson C, Bo Björkman. Dust forming mechanisms in the gas cleaning system after the copper converting[J]. Scandinavian Journal of Metallurgy, 1998, 27(2):64-72.

    [12]

    Miettinen E. Thermal conductivity and characteristics of copper flash smelting flue dust accretions[D]. Helsinki University of Technology, 2008.

    [13]

    Markova Ts, Boyanov B, Pironkov S, et al. Investigation of dusts from waste-heat boiler and electrostatic precipitators after flash smelting furnace for copper concentrates[J]. Journal of Mining and Metallurgy, 2000, 36(3-4):195-208.

    [14]

    Iliev P, Stefanova V, Shentov D, Thermodynamic analysis of the sulphatization processes taking place in a dust-gas flow from flash smelting furance[J]. Journal of Chemical Technology and Metallurgy, 2016, 51(3): 335-340.

    [15]

    Chen Y, Zhao Z, Taskinen P, et al. Characterization of copper smelting flue dusts from a bottom-blowing bath smelting furnace and a flash smelting furnace[J]. Metallurgical and Materials Transactions B, 2020(51):2596-2608.

    [16]

    余齐汉, 刘海泉, 邱树华. 闪速熔炼排烟系统烟尘硫酸盐化技术的应用[J]. 有色冶金设计与研究, 2015, 36(2):22-26. YU Q H, LIU H Q, QIU S H. Application of dust sulfation technology of flash smelting flue gas exhaust system[J]. Nonferrous Metals Engineering & Research, 2015, 36(2):22-26. doi: 10.3969/j.issn.1004-4345.2015.02.007

    [17]

    Swinbourne D R, Simak E, and Yazawa A. Accretion and dust formation in copper smelting-thermodynamic considerations[C]. // Sulfide Smelting . Seattle: TMS (The Minerals, Metals and Materials Society), 2002: 247-259.

    [18]

    郭引刚, 韩战旗, 王伯义, 等. 铜闪速吹炼烟道口结焦原因分析及控制实践[J]. 中国有色冶金, 2018, 47(5):27-28,33. GUO Y G, HAN Z Q, WANG B Y, et al. Causal analysis of coking at flue hole in copper flash smelting process and its control practice[J]. China Nonferrous Metallurgy, 2018, 47(5):27-28,33. doi: 10.3969/j.issn.1672-6103.2018.05.008

    [19]

    Kurosawa T, Yagishi T, Togo K, et al. On the several problems of dust in the copper dmelting[J]. Transactions of National Rresearch Institute for Metals, 1973, 15(3):34-44.

    [20]

    Kim J Y, Lajoie S, Godbehere P. Characterization of copper smelter dusts and its effect on metal recovery[C]. //Waste Processing and Recycling in Mineral and Metallurgical Industries II, Vancouver, Canada: CIM, 1995: 221-234.

    [21]

    Yang Y. Computer simulation of gas flow and heat transfer in waste-heat boilers of the outokumpu copper flash smelting process[J]. Acta Polytechnica Scandinavica Chemical Technology. 1996, 38(242): 1-135.

    [22]

    Balladares E, Kelm U, Helle S, et al. Chemical mineralogical characterization of copper smelting flue dust[J]. Dyan, 2014, 81(186):11-18.

    [23]

    Morales A, Cruells M, Roca A, et al. Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization[J]. Hydrometallurgy, 2010, 105(1-2):148-154. doi: 10.1016/j.hydromet.2010.09.001

    [24]

    Fernández-Caliani J C, Moreno-Ventas I, et al. Mineral chemistry and phase equilibrium constraints on the origin of accretions formed during copper flash smelting[C]. Minerals & Metallurgical Processing, 2017, 34(1): 36-43.

    [25]

    Stefanova V, Shentov D, Mihailova I, et al. Investigation of the phase composition of accretions formed into WHB under flash smelting of copper concentrate[J]. Russian Journal of Non-ferrous Metals, 2012, 53(1):26-32. doi: 10.3103/S106782121201021X

    [26]

    Evans J P, Mackey P J, Scott J D. Impact of gas cooling techniques on smelter dust segregation[C]. // Smelter process gas handling and treatment. Warrendale, PA: TMS, 1991: 189-214.

    [27]

    罗绍宏, 谭湘庭. 铜精矿熔炼炉烟道结瘤机理探讨[J]. 有色金属(冶炼部分), 1980(4):18-23. LUO S H, TAN X T. Discussion on the mechanism of nodulation in the flue of copper concentrate smelting furnace[J]. Nonferrous Metals(Extractive Metallurgy), 1980(4):18-23.

    [28]

    张泽发. 结焦抑制剂在铜冶炼中的应用[C]// 中国有色金属学会, 首届全国红土镍矿冶炼技术研讨会, 浙江, 2012: 153-156.

    ZHANG Z F. Application of coking inhibitor in copper smelting[C]// Chinese Society of Nonferrous Metals, The First National Laterite Nickel Smelting Technology Symposium, Zhejiang, 2012: 153-156.

    [29]

    Hidayat T, Henao H M, Hayes P C, et al. Phase equilibria studies of the Cu-Fe-O-Si system in equilibrium with air and with metallic copper[J]. Metallurgical & Materials Transactions B, 2012, 43(5):1034-1045.

    [30]

    郑春到, 林东和. 闪速熔炼系统 As、Sb、Bi、Pb 的走向分布[J]. 中国有色冶金, 2015, 44(3):15-18. ZHENG C D, LIN D H. As, Sb, Bi, Pb flow direction and distribution in flash smelting system[J]. China Nonferrous Metallurgy, 2015, 44(3):15-18. doi: 10.3969/j.issn.1672-6103.2015.03.005

    [31]

    王智, 郭学益, 王海滨, 等. 多元炉上升烟道结焦的分析与讨论[J]. 资源再生, 2018, 196(11):50-52. WANG Z, GUO X Y, WANG H B, et al. Analysis and discussion about accretion in the uptake of SLS[J]. Resource Recycling, 2018, 196(11):50-52. doi: 10.3969/j.issn.1673-7776.2018.11.016

    [32]

    甘聪. 闪速熔炼炉排烟系统粘结影响因素分析及控制措施[J]. 中国有色冶金, 2019(2):45-48. GAN C. Analysis and control measures of affecting factors on the caking in fume exhaust of flash furnace[J]. China Nonferrous Metallurgy, 2019(2):45-48. doi: 10.3969/j.issn.1672-6103.2019.06.012

    [33]

    马永明. 铜冶炼烟尘工艺及其性质分析控制[J]. 中小企业管理与科技, 2019(29):137-138. MA Y M. Analysis and control of copper smelting soot process and its properties[J]. Management & Technology of SME, 2019(29):137-138.

    [34]

    陈汉春. 闪速熔炼的现状与进展[J]. 中国有色冶金, 1997, 26(2):l-7. CHEN H C. Present situation and development of flash smelting[J]. China Nonferrous Metallurgy, 1997, 26(2):l-7.

    [35]

    冯治兵, 潘小龙. “白银炼铜法”双侧吹富氧熔池熔炼工艺发展综述[J]. 世界有色金属, 2018(11):1-3. FENG Z B, PAN X L. "Baiyin copper smelting" oxygen enrichment molten pool melting process development[J]. World Nonferrous Metals, 2018(11):1-3. doi: 10.3969/j.issn.1002-5065.2018.11.001

    [36]

    骆时雨. 降低闪速炉烟灰发生率[J]. 铜业工程, 2018(4):41-44. LUO S Y. Reduce the occurrence rate of flash furnace soot[J]. Copper Engineering, 2018(4):41-44. doi: 10.3969/j.issn.1009-3842.2018.04.011

    [37]

    吴建华. 奥托昆普型闪速炉上升烟道粘结处理实践[J]. 湖南有色金属, 2017, 33(4):33-35. WU J H. Practice of upward flue bonding treatment of outokumpu type flash furnace[J]. Hunan Nonferrous Metals, 2017, 33(4):33-35. doi: 10.3969/j.issn.1003-5540.2017.04.010

    [38]

    张鑫, 惠兴欢, 朱江, 等. 控制艾萨炉余热锅炉过渡段结渣的生产实践[J]. 中国有色冶金, 2013, 42(3):12-14,18. ZHANG X, HUI X H, ZHU J, et al. Production practice of controlling slagging in transition section of heat recovery steam generator of ISA furnace[J]. China Nonferrous Metallurgy, 2013, 42(3):12-14,18. doi: 10.3969/j.issn.1672-6103.2013.03.003

    [39]

    周俊. 闪速炉废热锅炉结灰与SO3发生的原因分析[J]. 有色金属(冶炼部分), 2003(1):17-20. ZHOU J. Analysis on dust accretion and SO3 formation in flash smelting furnace waste heat boiler[J]. Nonferrous Metals(Extractive Metallurgy), 2003(1):17-20.

    [40]

    Maeda Y, Inoue H , Hoshikawa Y, et al. Current operation in kosaka smelter [C]. // Sulfide smelting: current and future practices . U. S. A. : TMS , 1998: 305.

    [41]

    刘贤龙, 姜志雄, 赵祥林, 等. 降低澳斯麦特炉系统烟道结焦的生产实践[J]. 有色冶金节能, 2018(34), 190(3): 13-17.

    LIU X L, JIANG Z X, ZHAO X L, et al. Production practice of reducing uptake flue coking of ausmelt furnace system[J]. Energy Saving of Non-ferrous Metallurgy, 2018(34), 190(3): 13-17.

    [42]

    张尧, 李坎. 余热锅炉振打清灰装置的设计[J]. 余热锅炉, 2013(2):17-19. ZHANG Y, LI K. The design of the vibrating ash removal device of the waste heat boiler[J]. Waste Heat Boiler, 2013(2):17-19.

    [43]

    唐信来, 雷玲, 孙向阳, 等. 高温闪速炉炉结爆破拆除[J]. 爆破, 2008, 25(4):77-78. TANG X L, LEI L, SUN X Y, et al. High-temperature furnace guitar flash blasting[J]. Blasting, 2008, 25(4):77-78. doi: 10.3963/j.issn.1001-487X.2008.04.021

  • 加载中

(3)

(2)

计量
  • 文章访问数:  1102
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2021-01-25
刊出日期:  2023-04-25

目录