高岭土伴生型石英分粒级制备光伏玻璃用石英砂

张乾伟, 吴建新, 方强, 刘小康, 杜润生, 孙凤军. 高岭土伴生型石英分粒级制备光伏玻璃用石英砂[J]. 矿产综合利用, 2023, 44(6): 9-14. doi: 10.3969/j.issn.1000-6532.2023.06.002
引用本文: 张乾伟, 吴建新, 方强, 刘小康, 杜润生, 孙凤军. 高岭土伴生型石英分粒级制备光伏玻璃用石英砂[J]. 矿产综合利用, 2023, 44(6): 9-14. doi: 10.3969/j.issn.1000-6532.2023.06.002
Zhang Qianwei, Wu Jianxin, Fang Qiang, Liu Xiaokang, Du Runsheng, Sun Fengjun. Preparation of Quartz Sand for Solar Photovoltaic Glass from Quartz Associated Kaolin by Size Fraction Distribution[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 9-14. doi: 10.3969/j.issn.1000-6532.2023.06.002
Citation: Zhang Qianwei, Wu Jianxin, Fang Qiang, Liu Xiaokang, Du Runsheng, Sun Fengjun. Preparation of Quartz Sand for Solar Photovoltaic Glass from Quartz Associated Kaolin by Size Fraction Distribution[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 9-14. doi: 10.3969/j.issn.1000-6532.2023.06.002

高岭土伴生型石英分粒级制备光伏玻璃用石英砂

  • 基金项目: 安徽省重点研发计划(202104a05020034);安徽省科技重大专项(201903a05020002);山东省重大科技创新工程(2019JZZY010317)
详细信息
    作者简介: 张乾伟(1986-),男,博士,高级工程师,研究方向为光伏材料的研究与制备
  • 中图分类号: TD97

Preparation of Quartz Sand for Solar Photovoltaic Glass from Quartz Associated Kaolin by Size Fraction Distribution

  • 这是一篇陶瓷及复合材料领域的论文。为助力碳中和、碳达峰目标,我国光伏玻璃需求量近年来快速增长,从而使光伏玻璃用低铁石英砂($ {{ \omega }}_{{\text{Fe}}_{\text{2}}{\text{O}}_{\text{3}}} $≤0.010%)供应趋紧,因此高岭土伴生型石英制备低铁石英砂备受关注。高岭土伴生型石英通常可在高岭土物理选矿的尾矿中富集,以广西合浦某高岭土物理选矿尾矿为实验对象,研究了分粒级选矿提纯对高岭土伴生型石英制备低铁石英砂的影响规律。结果表明,高岭土伴生型石英矿中+2 mm粒级的SiO2、Al2O3、Fe2O3含量优于0.71~2 mm、0.125~0.71 mm粒级相应指标;采用磨矿-分级-磁选-浮选的分粒级选矿提纯工艺,不同粒级所得浮选石英精砂的Fe2O3含量均不低于0.016%;对+2 mm粒级浮选精砂分别采用硫酸、草酸与氢氟酸、草酸为酸浸介质所得石英精砂的Fe2O3含量分别降至0.0091%、0.0054%,满足光伏玻璃、光学玻璃用低铁石英砂的Fe2O3含量要求。

  • 加载中
  • 图 1  高岭土伴生型石英的XRD

    Figure 1. 

    图 2  高岭土伴生型石英的粒度组成

    Figure 2. 

    图 3  高岭土伴生型石英分粒级选矿提纯工艺流程

    Figure 3. 

    图 4  不同粒级酸性浮选精砂体视显微照片

    Figure 4. 

    图 5  +2 mm试样酸浸提纯精砂体视显微照片

    Figure 5. 

    表 1  试样的主要化学成份与含量

    Table 1.  Main chemical composition and content of quartz associated kaolin sample

    化学成分SiO2Al2O3Fe2O3TiO2K2ONa2OCaOMgOLOI
    含量/%试样88.466.010.610.0661.920.0560.0290.0781.47
    +0.045 mm93.442.960.300.0281.580.0590.0200.0240.49
    下载: 导出CSV

    表 2  不同粒级试样的化学成分与含量

    Table 2.  Size fraction distribution chemical composition and content of quartz associated kaolin sample

    粒级/mmSiO2/%Al2O3/%Fe2O3/%
    +3.295.981.650.16
    -3.2+296.021.860.17
    -2+195.312.100.24
    -1+0.7195.502.030.21
    -0.71+0.12588.785.330.45
    -0.125+0.04---11.071.09
    -0.045---23.092.34
    下载: 导出CSV

    表 3  不同粒级试样强磁精砂主要化学成分

    Table 3.  High intensity magnetic concentrate chemical composition of different size samples

    粒级/mm化学成分/%
    SiO2Al2O3Fe2O3TiO2
    +298.270.710.0350.014
    -2+0.7197.241.220.0480.012
    -0.71+0.12592.542.980.0770.016
    下载: 导出CSV

    表 4  +2 mm试样强磁精砂浮选实验结果

    Table 4.  Flotation test results of high intensity magnetic concentrate from +2 mm sample

    药剂量/(kg/t)精砂指标/%
    TSPSNPDγ作业SiO2Al2O3Fe2O3
    0.720.2490.8999.310.280.024
    0.960.3285.7399.420.140.020
    1.200.4083.8399.480.210.023
    1.440.4880.7199.600.170.019
    1.680.5678.1999.550.160.016
    1.920.6476.6399.470.160.016
    下载: 导出CSV

    表 5  -2+0.71 mm强磁精砂浮选实验结果

    Table 5.  Flotation test results of high intensity magnetic concentrate from -2+0.71 mm sample

    药剂量/(kg/t)精砂指标/%
    TSPSNPDγ作业SiO2Al2O3Fe2O3
    0.480.1694.3097.950.790.041
    0.720.2491.7298.680.580.037
    0.960.3286.7899.070.310.033
    下载: 导出CSV

    表 6  -0.71 mm强磁精砂浮选实验结果

    Table 6.  Flotation test results of high intensity magnetic concentrate from -0.71 mm sample

    药剂量/(kg/t)精砂指标/%
    TSPSNPDγ作业SiO2Al2O3Fe2O3
    0.720.2492.3494.192.340.068
    0.960.3289.3695.311.980.071
    1.200.4088.9196.141.50.073
    1.800.6080.1397.401.110.065
    2.400.8072.8698.280.760.055
    下载: 导出CSV

    表 7  酸浸介质与用量实验结果

    Table 7.  Results of acid leaching medium and dosage

    酸用量/(kg/t)精砂指标/%
    硫酸氢氟酸草酸γ作业SiO2Al2O3Fe2O3
    230.00------98.1099.580.120.0094
    ---100.00---97.6199.680.0970.0069
    ------62.5098.5799.500.140.011
    92.00---31.2598.1499.570.130.0091
    46.00---31.2598.2299.610.130.011
    ---75.0050.0097.3899.780.0670.0054
    ---50.0031.2597.4799.800.0810.0057
    下载: 导出CSV

    表 8  酸浸时间、温度实验结果

    Table 8.  Results of acid leaching time and temperature

    实验条件精砂指标/%
    酸用量/(kg/t)温度/℃时间/hγ作业Fe2O3
    硫酸,92.00
    草酸,31.25
    1002.098.300.010
    1001.098.220.010
    1000.598.390.011
    901.598.540.011
    801.598.400.011
    氢氟酸,75.00
    草酸,50.00
    1002.097.410.0059
    1001.097.500.0067
    1000.597.770.011
    901.598.380.0058
    801.598.000.0070
    下载: 导出CSV
  • [1]

    马超. 砂质高岭土尾矿制备高纯石英的基础研究[D]. 北京: 中国地质科学院, 2020.

    MA C. Basic study on preparation of high purity quartz from sandy kaolinite tailings [D]. Beijing: Chinese Academy of Geological Sciences, 2020.

    [2]

    汪灵. 石英的矿床工业类型与应用特点[J]. 矿产保护与利用, 2019, 39(6):39-47. WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6):39-47. doi: 10.13779/j.cnki.issn1001-0076.2019.06.007

    WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 39-47. doi: 10.13779/j.cnki.issn1001-0076.2019.06.007

    [3]

    吴飞达, 高惠民, 任子杰, 等. 合浦某高岭土尾砂的提纯与利用[J]. 非金属矿, 2019, 42(5):62-66. WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5):62-66. doi: 10.3969/j.issn.1000-8098.2019.05.018

    WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5): 62-66. doi: 10.3969/j.issn.1000-8098.2019.05.018

    [4]

    顾真安, 同继锋, 崔源声, 等. 建材非金属矿产资源强国战略研究[J]. 中国工程科学, 2019, 21(1):104-112. GU Z A, TONG J F, CUI Y S, et al. Strategic research on nonmetallic mineral resources for building materials in China[J]. Strategic Study of CAE, 2019, 21(1):104-112. doi: 10.15302/J-SSCAE-2019.01.015

    GU Z A, TONG J F, CUI Y S, et al. Strategic research on nonmetallic mineral resources for building materials in China[J]. Strategic Study of CAE, 2019, 21(1): 104-112. doi: 10.15302/J-SSCAE-2019.01.015

    [5]

    孙小朋, 何帅杰, 轩云辉. 分级-分选技术在高岭土提纯中的应用分析[J]. 矿冶, 2018, 27(4):10-15+21. SUN X P, HE S J, XUAN Y H. Application of grading-sorting technique in kaolin purification[J]. Mining & Metallurgy, 2018, 27(4):10-15+21. doi: 10.3969/j.issn.1005-7854.2018.04.003

    SUN X P, HE S J, XUAN Y H. Application of grading-sorting technique in kaolin purification [J]. Mining & Metallurgy, 2018, 27(4): 10-15+21. doi: 10.3969/j.issn.1005-7854.2018.04.003

    [6]

    刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺的研究[J]. 矿产综合利用, 2020(4):111-115. LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018

    LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018

  • 加载中

(5)

(8)

计量
  • 文章访问数:  347
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2021-08-03
刊出日期:  2023-12-25

目录