Preparation of Quartz Sand for Solar Photovoltaic Glass from Quartz Associated Kaolin by Size Fraction Distribution
-
摘要:
这是一篇陶瓷及复合材料领域的论文。为助力碳中和、碳达峰目标,我国光伏玻璃需求量近年来快速增长,从而使光伏玻璃用低铁石英砂(
≤0.010%)供应趋紧,因此高岭土伴生型石英制备低铁石英砂备受关注。高岭土伴生型石英通常可在高岭土物理选矿的尾矿中富集,以广西合浦某高岭土物理选矿尾矿为实验对象,研究了分粒级选矿提纯对高岭土伴生型石英制备低铁石英砂的影响规律。结果表明,高岭土伴生型石英矿中+2 mm粒级的SiO2、Al2O3、Fe2O3含量优于0.71~2 mm、0.125~0.71 mm粒级相应指标;采用磨矿-分级-磁选-浮选的分粒级选矿提纯工艺,不同粒级所得浮选石英精砂的Fe2O3含量均不低于0.016%;对+2 mm粒级浮选精砂分别采用硫酸、草酸与氢氟酸、草酸为酸浸介质所得石英精砂的Fe2O3含量分别降至0.0091%、0.0054%,满足光伏玻璃、光学玻璃用低铁石英砂的Fe2O3含量要求。$ {{ \omega }}_{{\text{Fe}}_{\text{2}}{\text{O}}_{\text{3}}} $ Abstract:This is an essay in the field of ceramics and composites.To achieve carbon neutrality and peaking carbon dioxide emissions, the low-iron quartz sand(
≤0.010%) supply for photovoltaic glass is tightening in China, so the preparation of low-iron quartz sand from quartz associated with kaolin gradually attracting widespread attention. However, quartz associated with kaolin can usually be enriched in the tailings of kaolin physical beneficiation. Taking quartz associated kaolin which is from tailings of kaolin physical beneficiation in Hepu, Guangxi as the object,the effect of purification by size fraction distribution on the preparation of low iron quartz sand from quartz-associated kaolin was studied in this essay. The experimental results showed that the index of SiO2, Al2O3 and Fe2O3 content in size of 2 mm or more was better than that of 0.71~2 mm and 0.125~0.71 mm respectively, but for all different size fraction products, ferric oxide content of quartz sand is not less than 0.016% by grinding, hydraulic classification, magnetic separation and flotation. The content of quartz sand obtained by sulfuric acid and oxalic acid was 0.0091%, and the content of quartz sand obtained by hydrofluoric acid and oxalic acid was 0.0054% respectively, both of which meets the ferric oxide content requirement of low iron quartz sand for solar photovoltaic glass and optical glass.${{ \omega }}_{{\text{Fe}}_{\text{2}}{\text{O}}_{\text{3}}}$ -
Key words:
- Ceramics and composites /
- Kaolin /
- Quartz /
- Size fraction /
- Purification
-
-
表 1 试样的主要化学成份与含量
Table 1. Main chemical composition and content of quartz associated kaolin sample
化学成分 SiO2 Al2O3 Fe2O3 TiO2 K2O Na2O CaO MgO LOI 含量/% 试样 88.46 6.01 0.61 0.066 1.92 0.056 0.029 0.078 1.47 +0.045 mm 93.44 2.96 0.30 0.028 1.58 0.059 0.020 0.024 0.49 表 2 不同粒级试样的化学成分与含量
Table 2. Size fraction distribution chemical composition and content of quartz associated kaolin sample
粒级/mm SiO2/% Al2O3/% Fe2O3/% +3.2 95.98 1.65 0.16 -3.2+2 96.02 1.86 0.17 -2+1 95.31 2.10 0.24 -1+0.71 95.50 2.03 0.21 -0.71+0.125 88.78 5.33 0.45 -0.125+0.04 --- 11.07 1.09 -0.045 --- 23.09 2.34 表 3 不同粒级试样强磁精砂主要化学成分
Table 3. High intensity magnetic concentrate chemical composition of different size samples
粒级/mm 化学成分/% SiO2 Al2O3 Fe2O3 TiO2 +2 98.27 0.71 0.035 0.014 -2+0.71 97.24 1.22 0.048 0.012 -0.71+0.125 92.54 2.98 0.077 0.016 表 4 +2 mm试样强磁精砂浮选实验结果
Table 4. Flotation test results of high intensity magnetic concentrate from +2 mm sample
药剂量/(kg/t) 精砂指标/% TSPS NPD γ作业 SiO2 Al2O3 Fe2O3 0.72 0.24 90.89 99.31 0.28 0.024 0.96 0.32 85.73 99.42 0.14 0.020 1.20 0.40 83.83 99.48 0.21 0.023 1.44 0.48 80.71 99.60 0.17 0.019 1.68 0.56 78.19 99.55 0.16 0.016 1.92 0.64 76.63 99.47 0.16 0.016 表 5 -2+0.71 mm强磁精砂浮选实验结果
Table 5. Flotation test results of high intensity magnetic concentrate from -2+0.71 mm sample
药剂量/(kg/t) 精砂指标/% TSPS NPD γ作业 SiO2 Al2O3 Fe2O3 0.48 0.16 94.30 97.95 0.79 0.041 0.72 0.24 91.72 98.68 0.58 0.037 0.96 0.32 86.78 99.07 0.31 0.033 表 6 -0.71 mm强磁精砂浮选实验结果
Table 6. Flotation test results of high intensity magnetic concentrate from -0.71 mm sample
药剂量/(kg/t) 精砂指标/% TSPS NPD γ作业 SiO2 Al2O3 Fe2O3 0.72 0.24 92.34 94.19 2.34 0.068 0.96 0.32 89.36 95.31 1.98 0.071 1.20 0.40 88.91 96.14 1.5 0.073 1.80 0.60 80.13 97.40 1.11 0.065 2.40 0.80 72.86 98.28 0.76 0.055 表 7 酸浸介质与用量实验结果
Table 7. Results of acid leaching medium and dosage
酸用量/(kg/t) 精砂指标/% 硫酸 氢氟酸 草酸 γ作业 SiO2 Al2O3 Fe2O3 230.00 --- --- 98.10 99.58 0.12 0.0094 --- 100.00 --- 97.61 99.68 0.097 0.0069 --- --- 62.50 98.57 99.50 0.14 0.011 92.00 --- 31.25 98.14 99.57 0.13 0.0091 46.00 --- 31.25 98.22 99.61 0.13 0.011 --- 75.00 50.00 97.38 99.78 0.067 0.0054 --- 50.00 31.25 97.47 99.80 0.081 0.0057 表 8 酸浸时间、温度实验结果
Table 8. Results of acid leaching time and temperature
实验条件 精砂指标/% 酸用量/(kg/t) 温度/℃ 时间/h γ作业 Fe2O3 硫酸,92.00
草酸,31.25100 2.0 98.30 0.010 100 1.0 98.22 0.010 100 0.5 98.39 0.011 90 1.5 98.54 0.011 80 1.5 98.40 0.011 氢氟酸,75.00
草酸,50.00100 2.0 97.41 0.0059 100 1.0 97.50 0.0067 100 0.5 97.77 0.011 90 1.5 98.38 0.0058 80 1.5 98.00 0.0070 -
[1] 马超. 砂质高岭土尾矿制备高纯石英的基础研究[D]. 北京: 中国地质科学院, 2020.
MA C. Basic study on preparation of high purity quartz from sandy kaolinite tailings [D]. Beijing: Chinese Academy of Geological Sciences, 2020.
[2] 汪灵. 石英的矿床工业类型与应用特点[J]. 矿产保护与利用, 2019, 39(6):39-47. WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6):39-47. doi: 10.13779/j.cnki.issn1001-0076.2019.06.007
WANG L. Industrial types and application characteristics of quartz ore deposits[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 39-47. doi: 10.13779/j.cnki.issn1001-0076.2019.06.007
[3] 吴飞达, 高惠民, 任子杰, 等. 合浦某高岭土尾砂的提纯与利用[J]. 非金属矿, 2019, 42(5):62-66. WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5):62-66. doi: 10.3969/j.issn.1000-8098.2019.05.018
WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5): 62-66. doi: 10.3969/j.issn.1000-8098.2019.05.018
[4] 顾真安, 同继锋, 崔源声, 等. 建材非金属矿产资源强国战略研究[J]. 中国工程科学, 2019, 21(1):104-112. GU Z A, TONG J F, CUI Y S, et al. Strategic research on nonmetallic mineral resources for building materials in China[J]. Strategic Study of CAE, 2019, 21(1):104-112. doi: 10.15302/J-SSCAE-2019.01.015
GU Z A, TONG J F, CUI Y S, et al. Strategic research on nonmetallic mineral resources for building materials in China[J]. Strategic Study of CAE, 2019, 21(1): 104-112. doi: 10.15302/J-SSCAE-2019.01.015
[5] 孙小朋, 何帅杰, 轩云辉. 分级-分选技术在高岭土提纯中的应用分析[J]. 矿冶, 2018, 27(4):10-15+21. SUN X P, HE S J, XUAN Y H. Application of grading-sorting technique in kaolin purification[J]. Mining & Metallurgy, 2018, 27(4):10-15+21. doi: 10.3969/j.issn.1005-7854.2018.04.003
SUN X P, HE S J, XUAN Y H. Application of grading-sorting technique in kaolin purification [J]. Mining & Metallurgy, 2018, 27(4): 10-15+21. doi: 10.3969/j.issn.1005-7854.2018.04.003
[6] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺的研究[J]. 矿产综合利用, 2020(4):111-115. LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018
LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018
-