油酸钠体系下铁离子活化石英的吸附特性

赵通林, 刘树永, 韩百岁, 李龙飞. 油酸钠体系下铁离子活化石英的吸附特性[J]. 矿产综合利用, 2023, 44(6): 30-35. doi: 10.3969/j.issn.1000-6532.2023.06.005
引用本文: 赵通林, 刘树永, 韩百岁, 李龙飞. 油酸钠体系下铁离子活化石英的吸附特性[J]. 矿产综合利用, 2023, 44(6): 30-35. doi: 10.3969/j.issn.1000-6532.2023.06.005
Zhao Tonglin, Liu Shuyong, Han Baisui, Li Longfei. Adsorption Characteristics of Iron Ion Activated Quartz in Sodium Oleate System[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 30-35. doi: 10.3969/j.issn.1000-6532.2023.06.005
Citation: Zhao Tonglin, Liu Shuyong, Han Baisui, Li Longfei. Adsorption Characteristics of Iron Ion Activated Quartz in Sodium Oleate System[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 30-35. doi: 10.3969/j.issn.1000-6532.2023.06.005

油酸钠体系下铁离子活化石英的吸附特性

  • 基金项目: 辽宁省攀登学者人才项目和辽宁省重点项目(2017230002)
详细信息
    作者简介: 赵通林(1970-),男,教授,硕士生导师,主要从事矿物加工工程专业教学与研究
    通讯作者: 刘树永(1994-),男,硕士研究生,主要从事磷矿浮选研究
  • 中图分类号: TD97

Adsorption Characteristics of Iron Ion Activated Quartz in Sodium Oleate System

More Information
  • 这是一篇矿物加工工程领域的论文。本文通过纯矿物浮选实验研究了Fe2+和Fe3+在油酸阴离子捕收剂体系下对石英的浮选行为的影响,并采用红外光谱分析、原子力显微镜成像分析和Zeta电位测定分析等方法,进行了Fe3+活化石英的机理研究。纯矿物浮选实验结果表明,Fe3+的活化作用比Fe2+的强,在以Fe3+为活化离子的条件下,油酸钠的捕收作用比亚油酸钠强;红外光谱分析和原子力显微镜成像分析结果表明,油酸钠难以在未经活化的石英矿物表面产生有效吸附,但油酸钠可以有效吸附在经过Fe3+活化后的石英表面;Zeta电位分析结果表明,在pH值为6.0时,Fe3+活化后的石英表面的正电位达到较大值,且活化后的石英基本呈正电性。

  • 加载中
  • 图 1  石英的XRD

    Figure 1. 

    图 2  pH值对石英可浮性的影响

    Figure 2. 

    图 3  活化剂用量对石英可浮性的影响

    Figure 3. 

    图 4  捕收剂用量对石英可浮性的影响

    Figure 4. 

    图 5  石英与药剂作用前后的红外光谱

    Figure 5. 

    图 6  结净的石英表面以及油酸钠在Fe3+活化前后的石英表面AFM

    Figure 6. 

    图 7  pH值对石英电位的影响

    Figure 7. 

    表 1  石英化学多元素分析结果/%

    Table 1.  Results of quartz chemical multi-element analysis

    SiO2Al2O3P2O5CaOFe2O3Cl
    99.370.210.040.360.010.01
    下载: 导出CSV
  • [1]

    刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺的研究[J]. 矿产综合利用, 2020(4):111-115. LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4):111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018

    LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 111-115. doi: 10.3969/j.issn.1000-6532.2020.04.018

    [2]

    王杨, 陈留慧. 某金矿尾矿提纯石英应用对比实验研究[J]. 矿产综合利用, 2021(2):159-162. WANG Y, CHEN L H. Study on comparative test for the application of purified quartz from a gold ore tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(2):159-162. doi: 10.3969/j.issn.1000-6532.2021.02.027

    WANG Y, CHEN L H. Study on comparative test for the application of purified quartz from a gold ore tailings [J]. Multipurpose Utilization of Mineral Resources, 2021(2): 159-162. doi: 10.3969/j.issn.1000-6532.2021.02.027

    [3]

    León M, Martín P, Vila R, et al. Neutron irradiation effects on optical absorption of KU1 and KS-4V quartz glasses and Infrasil 301[J]. Fusion Engineering & Design, 2009, 84(7-11):1174-1178.

    [4]

    Pyo, Sukhoon, Tafesse, et al. Effects of quartz-based mine tailings on characteristics and leaching behavior of ultra-high performance concrete[J]. Construction and Building Materials, 2018.

    [5]

    林敏, 裴振宇, 熊康, 等. 我国高纯石英制备技术现状[J]. 矿产综合利用, 2017(5):18-21. LIN M, PEI Z Y, XIONG K, et al. Situation of high-purity quartz preparation in China[J]. Multipurpose Utilization of Mineral Resources, 2017(5):18-21. doi: 10.3969/j.issn.1000-6532.2017.05.004

    LIN M, PEI Z Y, XIONG K, et al. Situation of high-purity quartz preparation in China[J]. Multipurpose Utilization of Mineral Resources, 2017(5): 18-21. doi: 10.3969/j.issn.1000-6532.2017.05.004

    [6]

    吴中贤, 姜效军, 陶东平. 新型胶磷矿反浮选脱硅阳离子捕收剂实验研究[J]. 矿产综合利用, 2020(5):92-100. WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5):92-100. doi: 10.3969/j.issn.1000-6532.2020.05.013

    WU Z X, JIANG X J, TAO D P. Experimental study on a novel cationic collector for reverse flotation of collophane for silica removal[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 92-100. doi: 10.3969/j.issn.1000-6532.2020.05.013

    [7]

    徐廷航, 龙秉文, 张逸, 等. 磷矿反浮选脱硅药剂的合成与应用[J]. 矿产综合利用, 2021(3):57-63. XU T H, LONG B W, ZHANG Y, et al. Synthesis and application of silicon removal reagent for reverse flotation of phosphate rock[J]. Multipurpose Utilization of Mineral Resources, 2021(3):57-63.

    XU T H, LONG B W, ZHANG Y, et al. Synthesis and application of silicon removal reagent for reverse flotation of phosphate rock[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 57-63.

    [8]

    Filippov L O, Severov V V, Filippova I V. An overview of the beneficiation of iron ores via reverse cationic flotation[J]. International Journal of Mineral Processing, 2014, 127:62-69. doi: 10.1016/j.minpro.2014.01.002

    [9]

    陈俐全, 张凌燕, 陈志强, 等. 铝离子对油酸钠浮选石英的影响及作用机理[J]. 金属矿山, 2018(1):120-124. CHEN L Q, ZHANG L Y, CHEN Z Q, et al. Effect and mechanism of aluminum ion on quartz flotation in the system of sodium oleate[J]. Metal Mine, 2018(1):120-124. doi: 10.19614/j.cnki.jsks.201801024

    CHEN L Q, ZHANG L Y, CHEN Z Q, et al. Effect and mechanism of aluminum ion on quartz flotation in the system of sodium oleate[J]. Metal Mine, 2018(1): 120-124. doi: 10.19614/j.cnki.jsks.201801024

    [10]

    Zhang J, Wang W, Liu J, et al. Fe(III) as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Minerals Engineering, 2014.

    [11]

    Liu A, Fan J C, Fan M Q. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz ( 0 1) surface in the aqueous solution[J]. International Journal of Mineral Processing, 2015, 134:1-10. doi: 10.1016/j.minpro.2014.11.001

    [12]

    Potapova E, Grahn M, Holmgren A, et al. The effect of calcium ions and sodium silicate on the adsorption of a model anionic flotation collector on magnetite studied by ATR-FTIR spectroscopy[J]. Journal of Colloid & Interface Science, 2010, 345(1):96-102.

    [13]

    欧乐明, 叶家笋, 曾维伟, 等. 铁离子和亚铁离子对菱锌矿和石英浮选的影响[J]. 有色金属(选矿部分), 2012(6):79-82. OU L M, YE J S, ZENG W W, et al. Influence and mechanism of ferric and ferrous ions on flotation of smithsonite and quartz[J]. Nonferrous Metals(Mineral Processing Section), 2012(6):79-82.

    OU L M, YE J S, ZENG W W, et al. Influence and mechanism of ferric and ferrous ions on flotation of smithsonite and quartz[J]. Nonferrous Metals(Mineral Processing Section), 2012(6): 79-82.

    [14]

    唐劭禹, 张凌燕, 张冲, 等. Fe3+对十二烷基磺酸钠捕收石英的活化作用研究[J]. 非金属矿, 2017, 40(5):79-81. TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non-Metallic Mines, 2017, 40(5):79-81. doi: 10.3969/j.issn.1000-8098.2017.05.024

    TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non-Metallic Mines, 2017, 40(5): 79-81. doi: 10.3969/j.issn.1000-8098.2017.05.024

    [15]

    周海玲, 刘永胜. 油酸钠在红柱石与粉石英表面的吸附机理[J]. 矿产综合利用, 2020(2):198-202. ZHOU H L, LIU Y S. Adsorption mechanism of sodium oleate on andalusite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):198-202. doi: 10.3969/j.issn.1000-6532.2020.02.036

    ZHOU H L, LIU Y S. Adsorption mechanism of sodium oleate on andalusite[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 198-202. doi: 10.3969/j.issn.1000-6532.2020.02.036

    [16]

    寇珏, 郭玉, 孙体昌, 等. 2种阴离子捕收剂在石英表面的吸附机理[J]. 中南大学学报(自然科学版), 2015, 46(11):4005-4014. KOU J, GUO Y, SUN T C, et al. Adsorption mechanism of two different anionic collectors on quartz surface[J]. Journal of Central South University(Science and Technology), 2015, 46(11):4005-4014.

    KOU J, GUO Y, SUN T C, et al. Adsorption mechanism of two different anionic collectors on quartz surface[J]. Journal of Central South University(Science and Technology), 2015, 46(11): 4005-4014.

    [17]

    吴卫国, 孙传尧, 朱永楷. 有机螯合剂对活化石英的抑制及其作用机理[J]. 金属矿山, 2007(2):33-37. WU W G, SUN C Y, ZHU Y K. Depression of organic chelating agents on activated quartz its mechanism[J]. Metal Mine, 2007(2):33-37. doi: 10.3321/j.issn:1001-1250.2007.02.010

    WU W G, SUN C Y, ZHU Y K. Depression of organic chelating agents on activated quartz its mechanism[J]. Metal Mine, 2007(2): 33-37. doi: 10.3321/j.issn:1001-1250.2007.02.010

  • 加载中

(7)

(1)

计量
  • 文章访问数:  133
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-11-16
刊出日期:  2023-12-25

目录