水玻璃改性水泥对细粒尾矿胶结性能的影响

李若昀, 刘庆, 冯艳斐, 吕宪俊, 王俊祥. 水玻璃改性水泥对细粒尾矿胶结性能的影响[J]. 矿产综合利用, 2023, 44(6): 114-119. doi: 10.3969/j.issn.1000-6532.2023.06.017
引用本文: 李若昀, 刘庆, 冯艳斐, 吕宪俊, 王俊祥. 水玻璃改性水泥对细粒尾矿胶结性能的影响[J]. 矿产综合利用, 2023, 44(6): 114-119. doi: 10.3969/j.issn.1000-6532.2023.06.017
Li Ruoyun, Liu Qing, Feng Yanfei, Lyu Xianjun, Wang Junxiang. Effects of Water Glass Modified Cement on the Performances of Cemented Fine Tailings[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 114-119. doi: 10.3969/j.issn.1000-6532.2023.06.017
Citation: Li Ruoyun, Liu Qing, Feng Yanfei, Lyu Xianjun, Wang Junxiang. Effects of Water Glass Modified Cement on the Performances of Cemented Fine Tailings[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 114-119. doi: 10.3969/j.issn.1000-6532.2023.06.017

水玻璃改性水泥对细粒尾矿胶结性能的影响

  • 基金项目: 山东省自然科学基金(ZR2019BEE057);山东科技大学人才引进科研启动基金项目(2019RCJJ007);贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]466)
详细信息
    作者简介: 李若昀(1997-),女,硕士研究生,主要从事矿物资源综合利用的研究
    通讯作者: 王俊祥(1986-),男,副教授,主要从事微细粒尾矿膏体浓缩与胶结充填、矿物资源综合利用等的研究
  • 中图分类号: TD989

Effects of Water Glass Modified Cement on the Performances of Cemented Fine Tailings

More Information
  • 这是一篇陶瓷及复合材料领域的论文。为了研究水玻璃对水泥水化反应和细粒尾矿胶结充填材料(CTB)性能的影响机理,采用抗压强度测试、X射线衍射(XRD)、热重(TG)、扫描电子显微镜(SEM)等技术手段探究了水玻璃掺量对CTB抗压强度以及水泥水化产物和微观形貌的影响。结果表明,在一定范围内,水玻璃的掺入能够消耗试样中的Ca(OH)2,生成大量C-S-H凝胶,形成致密的微观结构,有助于强度的快速发展。由于水泥体系中的Ca(OH)2被完全消耗,水玻璃掺量的进一步增加并未显著提高C-S-H凝胶的生成量,导致CTB抗压强度的强度增长幅度减弱。

  • 加载中
  • 图 1  (a)细粒尾矿和(b)水泥的XRD

    Figure 1. 

    图 2  水玻璃掺量对CTB抗压强度的影响

    Figure 2. 

    图 3  不同水玻璃掺量条件下养护(a)3 d和(b)28 d的水泥净浆XRD

    Figure 3. 

    图 4  不同水玻璃掺量条件下水泥净浆水化(a)3 d和(b)28 d的TG-DTG

    Figure 4. 

    图 5  试样(a)C0、(b)C10和(c)C20养护28 d的SEM

    Figure 5. 

    表 1  细粒尾矿的粒度分布

    Table 1.  Particle size distribution of fine tailings

    粒级/μm产率/%筛上累积/%筛下累积/%
    +384.224.22100.00
    -38+2014.3318.5595.78
    -20+1030.5549.1081.45
    -10+517.0166.1150.90
    -533.89100.0033.89
    合计100.00
    下载: 导出CSV

    表 2  不同水玻璃掺量条件下水泥净浆中各水化产物的相对含量/%

    Table 2.  Relative quantities of hydration product of cement pastes with different water glass dosage

    样品3 d28 d
    C-S-HCa(OH) 2C-S-HCa(OH) 2
    C08.002.5111.982.15
    C1011.320.4015.560.36
    C2012.090.3715.260.31
    下载: 导出CSV
  • [1]

    刘俊杰, 梁钰, 曾宇, 等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(5):136-141. LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021

    LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021

    [2]

    杨晓炳, 王永定, 高谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料[J]. 矿产综合利用, 2019(4):130-134. YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028

    YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028

    [3]

    CHEN X, SHI X, ZHOU J, et al. Effect of overflow tailings properties on cemented paste backfill[J]. Journal of Environmental Management, 2019, 235:133-144.

    [4]

    吕宪俊, 金子桥, 胡术刚, 等. 细粒尾矿充填料浆的流变性及充填能力研究[J]. 金属矿山, 2011(5):32-35. LYU X J, JIN Z Q, HU S G, et al. Study on the rheological property and filling capacity of the filling slurry with fine tailings[J]. Metal Mine, 2011(5):32-35.

    LV X J, JIN Z Q, HU S G, et al. Study on the rheological property and filling capacity of the filling slurry with fine tailings[J]. Metal Mine, 2011(5): 32-35.

    [5]

    吕生华, 张佳, 殷海荣, 等. 氧化石墨烯调控水化产物增强增韧水泥基复合材料的研究进展[J]. 陕西科技大学学报, 2019, 37(3):136-145. LYU S H, ZHANG J, YIN H R, et al. Research progress of graphene oxide reinforced and toughened cement-based composites[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(3):136-145. doi: 10.3969/j.issn.1000-5811.2019.03.022

    LV S H, ZHANG J, YIN H R, et al. Research progress of graphene oxide reinforced and toughened cement-based composites[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(3): 136-145. doi: 10.3969/j.issn.1000-5811.2019.03.022

    [6]

    叶青, 张泽南, 孔德玉, 等. 掺纳米SiO2和掺硅粉高强混凝土性能的比较[J]. 建筑材料学报, 2003, 6(4):381-385. YE Q, ZHANG Z N, KONG D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. Journal of Building Materials, 2003, 6(4):381-385. doi: 10.3969/j.issn.1007-9629.2003.04.008

    YE Q, ZHANG Z N, KONG D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. Journal of Building Materials, 2003, 6(4): 381-385. doi: 10.3969/j.issn.1007-9629.2003.04.008

    [7]

    刘兵科, 陈城. 超细水泥-水玻璃双液浆的性能研究[J]. 建筑技术, 2018, 49(11):1191-1193. LIU B K, CHEN C. Study on super-fine cement-sodium silicate mortar performance[J]. Architecture Technology, 2018, 49(11):1191-1193. doi: 10.3969/j.issn.1000-4726.2018.11.019

    LIU B K, CHEN C. Study on super-fine cement-sodium silicate mortar performance[J]. Architecture Technology, 2018, 49(11): 1191-1193. doi: 10.3969/j.issn.1000-4726.2018.11.019

    [8]

    QIU J P, GUO Z B, YANG L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill[J]. Construction and Building Materials, 2020, 263:1-10.

    [9]

    XUE G L, YILMAZ E, SONG W D, et al. Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes[J]. Construction and Building Materials, 2020, 241:1-10.

    [10]

    ALY M, HASHMIMSJ, OLABIAG, et al. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar[J]. Materials and Design, 2012, 33:127-135. doi: 10.1016/j.matdes.2011.07.008

    [11]

    WANG L G, ZHENG D P, ZHANG S P, et al. Effect of nano-SiO2 on the hydration and microstructure of Portland cement[J]. Nanomaterials, 2016, 6:1-15.

    [12]

    叶青, 张泽南, 陈荣升, 等. 纳米SiO2与水泥硬化浆体中Ca(OH) 2的反应[J]. 硅酸盐学报, 2003, 5(5):517-522. YE Q, ZHANG Z N, CHEN R S, et al. Reaction of nano-SiO2 with Ca(OH) 2 in cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2003, 5(5):517-522. doi: 10.3321/j.issn:0454-5648.2003.05.020

    YE Q, ZHANG Z N, CHEN R S, et al. Reaction of nano-SiO2 with Ca(OH) 2 in cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2003, 5: 517-522. doi: 10.3321/j.issn:0454-5648.2003.05.020

  • 加载中

(5)

(2)

计量
  • 文章访问数:  733
  • PDF下载数:  119
  • 施引文献:  0
出版历程
收稿日期:  2021-04-24
刊出日期:  2023-12-25

目录