Effects of Water Glass Modified Cement on the Performances of Cemented Fine Tailings
-
摘要:
这是一篇陶瓷及复合材料领域的论文。为了研究水玻璃对水泥水化反应和细粒尾矿胶结充填材料(CTB)性能的影响机理,采用抗压强度测试、X射线衍射(XRD)、热重(TG)、扫描电子显微镜(SEM)等技术手段探究了水玻璃掺量对CTB抗压强度以及水泥水化产物和微观形貌的影响。结果表明,在一定范围内,水玻璃的掺入能够消耗试样中的Ca(OH)2,生成大量C-S-H凝胶,形成致密的微观结构,有助于强度的快速发展。由于水泥体系中的Ca(OH)2被完全消耗,水玻璃掺量的进一步增加并未显著提高C-S-H凝胶的生成量,导致CTB抗压强度的强度增长幅度减弱。
Abstract:This is an essay in the field of ceramics and composites. To study the effect of water glass on the hydration reaction of cement and performances of cemented fine tailings backfilling materials (CTB), compressive strength test, X-ray diffraction (XRD), thermogravimetric (TG), scanning electron microscope (SEM) were used to investigate the effects of water glass dosage on the compressive strength of CTB, hydration products, and microstructure of cement pastes. The results showed that, for a given range, the addition of water glass consumed the Ca(OH)2 in samples and generated large amounts of calcium silicate hydrate (C-S-H) gels, forming a compact microstructure, which was beneficial for the rapid development of strength. However, the further increase in the water glass dosage did not significantly improve the quantities of C-S-H gels because the Ca(OH)2 in cement system was completely consumed, leading to a weak enhancement in the strength of CTB.
-
-
表 1 细粒尾矿的粒度分布
Table 1. Particle size distribution of fine tailings
粒级/μm 产率/% 筛上累积/% 筛下累积/% +38 4.22 4.22 100.00 -38+20 14.33 18.55 95.78 -20+10 30.55 49.10 81.45 -10+5 17.01 66.11 50.90 -5 33.89 100.00 33.89 合计 100.00 表 2 不同水玻璃掺量条件下水泥净浆中各水化产物的相对含量/%
Table 2. Relative quantities of hydration product of cement pastes with different water glass dosage
样品 3 d 28 d C-S-H Ca(OH) 2 C-S-H Ca(OH) 2 C0 8.00 2.51 11.98 2.15 C10 11.32 0.40 15.56 0.36 C20 12.09 0.37 15.26 0.31 -
[1] 刘俊杰, 梁钰, 曾宇, 等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(5):136-141. LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021
LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 136-141. doi: 10.3969/j.issn.1000-6532.2020.05.021
[2] 杨晓炳, 王永定, 高谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料[J]. 矿产综合利用, 2019(4):130-134. YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028
YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028
[3] CHEN X, SHI X, ZHOU J, et al. Effect of overflow tailings properties on cemented paste backfill[J]. Journal of Environmental Management, 2019, 235:133-144.
[4] 吕宪俊, 金子桥, 胡术刚, 等. 细粒尾矿充填料浆的流变性及充填能力研究[J]. 金属矿山, 2011(5):32-35. LYU X J, JIN Z Q, HU S G, et al. Study on the rheological property and filling capacity of the filling slurry with fine tailings[J]. Metal Mine, 2011(5):32-35.
LV X J, JIN Z Q, HU S G, et al. Study on the rheological property and filling capacity of the filling slurry with fine tailings[J]. Metal Mine, 2011(5): 32-35.
[5] 吕生华, 张佳, 殷海荣, 等. 氧化石墨烯调控水化产物增强增韧水泥基复合材料的研究进展[J]. 陕西科技大学学报, 2019, 37(3):136-145. LYU S H, ZHANG J, YIN H R, et al. Research progress of graphene oxide reinforced and toughened cement-based composites[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(3):136-145. doi: 10.3969/j.issn.1000-5811.2019.03.022
LV S H, ZHANG J, YIN H R, et al. Research progress of graphene oxide reinforced and toughened cement-based composites[J]. Journal of Shaanxi University of Science and Technology, 2019, 37(3): 136-145. doi: 10.3969/j.issn.1000-5811.2019.03.022
[6] 叶青, 张泽南, 孔德玉, 等. 掺纳米SiO2和掺硅粉高强混凝土性能的比较[J]. 建筑材料学报, 2003, 6(4):381-385. YE Q, ZHANG Z N, KONG D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. Journal of Building Materials, 2003, 6(4):381-385. doi: 10.3969/j.issn.1007-9629.2003.04.008
YE Q, ZHANG Z N, KONG D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. Journal of Building Materials, 2003, 6(4): 381-385. doi: 10.3969/j.issn.1007-9629.2003.04.008
[7] 刘兵科, 陈城. 超细水泥-水玻璃双液浆的性能研究[J]. 建筑技术, 2018, 49(11):1191-1193. LIU B K, CHEN C. Study on super-fine cement-sodium silicate mortar performance[J]. Architecture Technology, 2018, 49(11):1191-1193. doi: 10.3969/j.issn.1000-4726.2018.11.019
LIU B K, CHEN C. Study on super-fine cement-sodium silicate mortar performance[J]. Architecture Technology, 2018, 49(11): 1191-1193. doi: 10.3969/j.issn.1000-4726.2018.11.019
[8] QIU J P, GUO Z B, YANG L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill[J]. Construction and Building Materials, 2020, 263:1-10.
[9] XUE G L, YILMAZ E, SONG W D, et al. Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes[J]. Construction and Building Materials, 2020, 241:1-10.
[10] ALY M, HASHMIMSJ, OLABIAG, et al. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar[J]. Materials and Design, 2012, 33:127-135. doi: 10.1016/j.matdes.2011.07.008
[11] WANG L G, ZHENG D P, ZHANG S P, et al. Effect of nano-SiO2 on the hydration and microstructure of Portland cement[J]. Nanomaterials, 2016, 6:1-15.
[12] 叶青, 张泽南, 陈荣升, 等. 纳米SiO2与水泥硬化浆体中Ca(OH) 2的反应[J]. 硅酸盐学报, 2003, 5(5):517-522. YE Q, ZHANG Z N, CHEN R S, et al. Reaction of nano-SiO2 with Ca(OH) 2 in cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2003, 5(5):517-522. doi: 10.3321/j.issn:0454-5648.2003.05.020
YE Q, ZHANG Z N, CHEN R S, et al. Reaction of nano-SiO2 with Ca(OH) 2 in cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2003, 5: 517-522. doi: 10.3321/j.issn:0454-5648.2003.05.020
-