炉渣胶凝材料配比优选及充填体性能

马麟, 高天宇. 炉渣胶凝材料配比优选及充填体性能[J]. 矿产综合利用, 2023, 44(6): 127-134. doi: 10.3969/j.issn.1000-6532.2023.06.019
引用本文: 马麟, 高天宇. 炉渣胶凝材料配比优选及充填体性能[J]. 矿产综合利用, 2023, 44(6): 127-134. doi: 10.3969/j.issn.1000-6532.2023.06.019
Ma Lin, Gao Tianyu. Ratio Optimization of Slag Cementitious Material and the Properties of Filling Body[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 127-134. doi: 10.3969/j.issn.1000-6532.2023.06.019
Citation: Ma Lin, Gao Tianyu. Ratio Optimization of Slag Cementitious Material and the Properties of Filling Body[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 127-134. doi: 10.3969/j.issn.1000-6532.2023.06.019

炉渣胶凝材料配比优选及充填体性能

详细信息
    作者简介: 马麟(1991-),男,学士,助理工程师,主要从事充填胶凝材料方面的研究工作
  • 中图分类号: TD989

Ratio Optimization of Slag Cementitious Material and the Properties of Filling Body

  • 这是一篇陶瓷及复合材料领域的论文。针对某铅锌矿全尾砂充填以水泥为胶凝材料成本过高和充填体后期强度低的问题,采用丰富的炉渣固废资源,开发低成本炉渣胶凝材料满足矿山充填体的质量需求。在对尾砂、炉渣和水泥熟料进行物化分析后,通过充填料浆坍落度实验和炉渣胶凝材料配比探索实验,确定满足流动性的料浆浓度为70%左右,炉渣与水泥熟料比值为2~4为较优配比区间;通过全面实验法探究了不同配比炉渣胶凝材料充填体强度,充填料浆的泌水率和凝结特性。结果表明:炉渣胶凝材料配比为炉渣添加量75%~80%,水泥熟料添加量20%~25%,充填体能够满足强度0.5~3.5 MPa,充填料浆泌水率小于5%的充填质量要求。

  • 加载中
  • 图 1  全尾砂粒径级配累计曲线

    Figure 1. 

    图 3  不同胶凝材料不同胶砂比不同料浆浓度充填体7 d强度

    Figure 3. 

    图 2  不同胶凝材料不同胶砂比不同料浆浓度充填体3 d强度

    Figure 2. 

    图 4  不同胶凝材料不同胶砂比不同料浆浓度充填体28 d强度

    Figure 4. 

    图 5  胶砂比与泌水率的关系

    Figure 5. 

    图 6  胶砂比与凝结时间的关系

    Figure 6. 

    表 1  全尾砂颗粒级配常数

    Table 1.  Distribution constant of the whole tailings particle size

    d10/μmd30/μmd50/μmd60/μmd90/μmCuCc
    6.0229.9276.1121.441020.171.22
    注:Cu= d60/d10;[11]
    下载: 导出CSV

    表 2  炉渣粒径分布

    Table 2.  Distribution of slag particle size

    粒级/μm-5+5-10+10-20+20-30+30-40+40
    产率/%12.237.6928.1915.865.770.29
    累计/%12.249.8978.0893.9499.71100.00
    下载: 导出CSV

    表 3  炉渣化学成分/%

    Table 3.  Chemical composition of slag

    CaOSiO2Al2O3MgOSO3Fe2O3TiO2MnO
    39.5033.2710.707.782.201.701.181.13
    下载: 导出CSV

    表 4  不同胶砂比不同料浆浓度下尾砂料浆坍落度

    Table 4.  Slump of tailings slurry under different cement-sand ratio and slurry concentration

    胶砂比坍落度/cm
    76%74%72%70%68%
    1∶423.427.428.028.529.1
    1∶823.326.927.828.328.8
    1∶1223.126.527.328.028.5
    1∶1623.026.427.227.828.4
    下载: 导出CSV

    表 5  炉渣胶凝材料配比实验结果

    Table 5.  Ratio test results of slag cementitious materials

    组号炉渣∶水泥
    熟料
    炉渣/%水泥
    熟料/%
    单轴抗压强度/MPa
    3 d7 d14 d
    11∶420800.6731.1311.732
    21∶233670.4901.1421.750
    31∶150500.3201.1652.269
    42∶167330.2971.2382.809
    54∶180200.2831.0522.640
    6水泥0.5391.0221.580
    下载: 导出CSV

    表 6  炉渣胶凝材料1充填体强度配比实验

    Table 6.  Strength ratio test of slag cementitious material 1 filling body

    组号胶砂比浓度/%炉渣/%水泥熟料/%单轴抗压强度/MPa
    3 d7 d28 d
    11∶67280200.671.644.15
    21∶67080200.521.523.85
    31∶66880200.431.133.31
    41∶87280200.381.213.05
    51∶87080200.321.032.43
    61∶86880200.270.792.01
    71∶107280200.320.762.40
    81∶107080200.240.671.81
    91∶106880200.210.581.58
    101∶127280200.310.712.08
    111∶127080200.230.651.73
    121∶126880200.200.561.34
    下载: 导出CSV

    表 7  炉渣胶凝材料2充填体强度配比实验

    Table 7.  Strength ratio test of slag cementitious material 2 filling body

    组号胶砂比浓度/%炉渣/%水泥熟料/%单轴抗压强度/MPa
    3 d7 d28 d
    131∶67275250.701.734.39
    141∶67075250.511.583.51
    151∶66875250.421.223.14
    161∶87275250.371.223.14
    171∶87075250.321.072.41
    181∶86875250.270.821.98
    191∶107275250.310.842.92
    201∶107075250.270.672.12
    211∶106875250.220.571.79
    221∶127275250.280.772.10
    231∶127075250.260.612.01
    241∶126875250.210.531.57
    下载: 导出CSV

    表 8  炉渣胶凝材料3充填体强度配比实验

    Table 8.  Strength ratio test of slag cementitious material 3 filling body

    组号胶砂比浓度/%炉渣/%水泥熟料/%单轴抗压强度/MPa
    3 d7 d28 d
    251∶67270300.601.593.77
    261∶67070300.481.403.61
    271∶66870300.381.123.33
    281∶87270300.361.123.09
    291∶87070300.290.942.20
    301∶86870300.240.731.78
    311∶107270300.330.802.69
    321∶107070300.260.661.94
    331∶106870300.220.561.66
    341∶127270300.250.662.02
    351∶127070300.230.591.57
    361∶126870300.190.511.33
    下载: 导出CSV

    表 9  炉渣胶凝材料4充填体强度配比实验

    Table 9.  Strength ratio test of slag cementitious material 4 filling body

    组号胶砂比浓度/%炉渣/%水泥熟料/%单轴抗压强度/MPa
    3 d7 d28 d
    371∶67265350.661.624.05
    381∶67065350.561.433.61
    391∶6686350.471.083.01
    401∶87265350.361.083.05
    411∶87065350.310.922.41
    421∶86865350.260.681.99
    431∶107265350.310.822.75
    441∶107065350.300.632.37
    451∶106865350.230.541.89
    461∶127265350.250.691.90
    471∶127065350.230.531.62
    481∶126865350.210.481.43
    下载: 导出CSV

    表 10  水泥胶凝材料充填体强度配比实验

    Table 10.  Strength ratio test of cement cementitious material filling body

    组号胶砂比浓度/%单轴抗压强度/MPa
    3 d7 d28 d
    491∶6721.021.652.65
    501∶6700.891.472.32
    511∶6680.671.122.01
    521∶8720.711.281.68
    531∶8700.541.061.46
    541∶8680.480.831.06
    551∶10720.680.871.31
    561∶10700.490.751.15
    571∶10680.410.670.86
    581∶12720.540.660.94
    591∶12700.440.570.76
    601∶12680.370.490.65
    下载: 导出CSV

    表 11  充填料浆凝结时间

    Table 11.  Setting time of filing slurry

    编号胶砂比浓度/%初凝
    时间点/h
    终凝
    时间点/h
    初终凝
    时间差/h
    11∶67211.2531.5020.25
    27012.0032.2520.25
    36812.5033.0020.25
    41∶87213.7534.2520.25
    57014.2535.7521.50
    66815.0037.2522.25
    71∶107216.0039.2523.25
    87016.5040.5024.00
    96817.5042.0024.50
    101:127218.7543.2524.50
    117019.5044.2524.75
    126820.5045.5025.00
    下载: 导出CSV
  • [1]

    张国胜, 高谦, 郭斌, 等. 全尾砂胶凝材料开发及泡沫砂浆充填试验研究[J]. 金属矿山, 2020(12):74-80. ZHANG G S, GAO Q, GUO B, et al. Development of whole tailings cementitious material and experimental study on foam mortar filling[J]. Metal Mine, 2020(12):74-80. doi: 10.19614/j.cnki.jsks.202012012

    ZHANG G S, GAO Q, GUO B, et al. Development of whole tailings cementitious material and experimental study on foam mortar filling[J]. Metal Mine, 2020(12): 74-80. doi: 10.19614/j.cnki.jsks.202012012

    [2]

    杨晓炳, 王永定, 高谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料[J]. 矿产综合利用, 2019(4):130-134. YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028

    YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 130-134. doi: 10.3969/j.issn.1000-6532.2019.04.028

    [3]

    胡敏, 彭丽, 郭娜, 等. 磷石膏- 炭化污泥胶凝材料力学性能试验研究[J]. 矿产综合利用, 2020(4):196-201. HU M, PENG L, GUO N, et al. Study on mechanical properties of phosphogypsum-carbonized sludge composite cementitious materials[J]. Multipurpose Utilization of Mineral Resources, 2020(4):196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034

    HU M, PENG L, GUO N, et al. Study on mechanical properties of phosphogypsum-carbonized sludge composite cementitious materials[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 196-201. doi: 10.3969/j.issn.1000-6532.2020.04.034

    [4]

    梁晓杰, 常钧, 吴昊泽. 钢渣粉粒度对复合胶凝材料水化性能的影响[J]. 矿产综合利用, 2021(3):180-186. LIANG X J, CHANG J, WU H Z. Effect of particle size of steel slag powder on hydration performance of composite cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2021(3):180-186.

    LIANG X J, CHANG J, WU H Z. Effect of particle size of steel slag powder on hydration performance of composite cementitious material[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 180-186.

    [5]

    何良玉, 谯理格, 赵日煦, 等. 钢渣作胶凝材料和细集料制备高性能砂浆的研究[J]. 矿产综合利用, 2019(6):94-100. HE L Y, JIAO L G, ZHAO R X, et al. Study on preparation of high performance mortar using steel slag as cementitious material and fine aggregate[J]. Multipurpose Utilization of Mineral Resources, 2019(6):94-100. doi: 10.3969/j.issn.1000-6532.2019.06.021

    HE L Y, JIAO L G, ZHAO R X, et al. Study on preparation of high performance mortar using steel slag as cementitious material and fine aggregate[J]. Multipurpose Utilization of Mineral Resources, 2019(6): 94-100. doi: 10.3969/j.issn.1000-6532.2019.06.021

    [6]

    李夕兵, 刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.

    LI X B, LIU B. Review and exploration of current situation of backfill mining in hard rock mines[J]. Gold Science and Technology. 2018, 26(4): 492-502.

    [7]

    邢行, 杨仕教. 某铅锌矿超细全尾砂炼铅炉渣-水泥复合充填胶凝材料研究[J]. 硅酸盐通报, 2020, 39(7): 2232-2240.

    XING X, YANG S J. Study on the composite filling cementitious material for the lead smelting slag-cement with superfine full tailings in a lead zinc mine[J]. Bulletin of the Chinese Ceramic Society. 2020, 39(7): 2232-2240.

    [8]

    李兵, 杨仕教, 王洪武, 等. 某冶炼厂炼铅炉渣制备胶凝材料的试验研究[J]. 硅酸盐通报, 2014, 33(3):583-588. LI B, YANG S J, WANG H W, et al. Experimental research on producing cementing material using smelter's lead refinery slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3):583-588. doi: 10.16552/j.cnki.issn1001-1625.2014.03.020

    LI B, YANG S J, WANG H W, et al. Experimental research on producing cementing material using smelter's lead refinery slag[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 583-588. doi: 10.16552/j.cnki.issn1001-1625.2014.03.020

    [9]

    杨超, 郭利杰, 李文臣. 铜镍冶炼渣新型充填胶凝材料制备及其力学性能研究[J]. 矿业研究与开发, 2020, 40(8): 50-54.

    YANG C, GUO L J, LI W C. Preparation of new cementitious backfill materials with copper and nickel smelting slag and its mechanical properties[J]. Mining Research and Development. 2020, 40(8): 50-54.

    [10]

    朱庚杰, 齐兆军, 寇云鹏, 等. 分级细尾砂胶结充填强度和料浆流变性能试验研究[J]. 矿冶工程, 2020, 40(4): 18-22.

    ZHU G J, QI Z J, KOU Y P, et al. Experimental study on cemented backfill strength and slurry rheological properties of graded fine tailings[J]. Mining and Metallurgical Engineering. 2020, 40(4): 18-22.

    [11]

    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI G X. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Publishing House Co. , Ltd. 2004.

    [12]

    陈杰, 梁杨芝, 王俊, 等. 高沙充填材料的输送性能研究[J]. 硅酸盐通报, 2020, 39(1): 194-198.

    CHEN J, LIANG Y Z, WANG J, et al. Research on transport characteristic of high sand content filling material[J]. Bulletin of the Chinese Ceramic Society. 2020, 39(1): 194-198.

  • 加载中

(6)

(11)

计量
  • 文章访问数:  615
  • PDF下载数:  222
  • 施引文献:  0
出版历程
收稿日期:  2021-08-24
刊出日期:  2023-12-25

目录