非洲某高磷铁矿氧化焙烧-气基还原-磁选

吴世超, 高瑞琢, 孙体昌, 黄武胜, 延黎. 非洲某高磷铁矿氧化焙烧-气基还原-磁选[J]. 矿产综合利用, 2024, 45(1): 144-148, 154. doi: 10.3969/j.issn.1000-6532.2024.01.018
引用本文: 吴世超, 高瑞琢, 孙体昌, 黄武胜, 延黎. 非洲某高磷铁矿氧化焙烧-气基还原-磁选[J]. 矿产综合利用, 2024, 45(1): 144-148, 154. doi: 10.3969/j.issn.1000-6532.2024.01.018
WU Shichao, GAO Ruizhuo, SUN Tichang, HUANG Wusheng, YAN Li. Oxidation Roasting, Gas-based Reduction Followed by Magnetic Separation of a High Phosphorus Iron Ore in Africa[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 144-148, 154. doi: 10.3969/j.issn.1000-6532.2024.01.018
Citation: WU Shichao, GAO Ruizhuo, SUN Tichang, HUANG Wusheng, YAN Li. Oxidation Roasting, Gas-based Reduction Followed by Magnetic Separation of a High Phosphorus Iron Ore in Africa[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 144-148, 154. doi: 10.3969/j.issn.1000-6532.2024.01.018

非洲某高磷铁矿氧化焙烧-气基还原-磁选

  • 基金项目: 国家自然科学基金项目(51874017);国家重点研发计划项目(2021YFC2902404)
详细信息
    作者简介: 吴世超(1994-),男,博士研究生,从事难处理铁矿石及含铁固废高效利用研究
    通讯作者: 孙体昌(1958-),男,教授,博士研究生导师,从事难处理含铁资源高效利用与工业化研究
  • 中图分类号: TD925

Oxidation Roasting, Gas-based Reduction Followed by Magnetic Separation of a High Phosphorus Iron Ore in Africa

More Information
  • 这是一篇冶金工程领域的论文。针对高磷铁矿石气基还原存在球强度低以及还原温度高的问题,提出了氧化焙烧-气基还原-磁选新工艺。考查了氧化温度以及脱磷剂种类对氧化球抗压强度的影响,并找出了符合竖炉强度要求的氧化焙烧条件,在此基础上,研究了还原温度、还原气体总流量、还原气体组成以及还原时间对提铁降磷的影响。结果表明,在Na2CO3用量10%,氧化温度1200 ℃,氧化时间60 min,还原温度950 ℃,H2与CO的流量分别为3.75 L/min以及1.25 L/min,还原时间180 min的条件下,可获得铁品位91.15%、铁回收率93.07%和磷含量0.14%的粉末还原铁。扫描电镜结果表明,粉末还原铁中的磷以机械夹杂的形式存在,磷是通过磨矿-磁选除去。

  • 加载中
  • 图 1  矿石XRD

    Figure 1. 

    图 2  矿石SEM-EDS

    Figure 2. 

    图 3  氧化温度对氧化球抗压强度的影响

    Figure 3. 

    图 4  还原温度对粉末还原铁指标的影响

    Figure 4. 

    图 5  还原气体总流量对粉末还原铁指标的影响

    Figure 5. 

    图 6  还原气体组成对粉末还原铁指标的影响

    Figure 6. 

    图 7  还原时间对粉末还原铁指标的影响

    Figure 7. 

    图 8  粉末还原铁SEM-EDS

    Figure 8. 

    表 1  矿石的化学多元素分析结果/%

    Table 1.  Results of chemical multi-element analysis of ore

    TFePCaOSiO2Al2O3MgOMnOS
    55.810.722.245.494.950.550.350.023
    下载: 导出CSV
  • [1]

    杨敏. 惠民高磷褐铁矿焙烧-酸浸除磷机理研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2015.YANG M. Dephosphorization mechanism of the raw and as-roasted Huiming high phosphorus limonlite through sulfuric acid leaching[D]. Beijing: Institute of process engineering, Chinese Academy of Sciences, 2015.

    YANG M. Dephosphorization mechanism of the raw and as-roasted Huiming high phosphorus limonlite through sulfuric acid leaching[D]. Beijing: Institute of process engineering, Chinese Academy of Sciences, 2015.

    [2]

    Fisher-White M J, Lovel R R, Sparrow G J. Phosphorus removal from goethitic iron ore with a low temperature heat treatment and a caustic leach[J]. Isij International. 2012, 52(5): 797–803.

    [3]

    郝先耀, 戴惠新, 赵志强. 高磷铁矿石降磷的现状与存在问题探讨[J]. 金属矿山, 2007(1):7-10.HAO X Y, DAI H X, ZHAO Z Q. State quo of phosphorous reduction of high phosphorus iron ore and discussion on Its problems[J]. Metal Mine, 2007(1):7-10. doi: 10.3321/j.issn:1001-1250.2007.01.002

    HAO X Y, DAI H X, ZHAO Z Q. State quo of phosphorous reduction of high phosphorus iron ore and discussion on Its problems[J]. Metal Mine, 2007(1):7-10. doi: 10.3321/j.issn:1001-1250.2007.01.002

    [4]

    肖敏, 邱小英, 蓝桥发. 高磷鲕状赤铁矿金属化还原焙烧-磁选-熔分新工艺研究[J]. 矿产综合利用, 2020(5):101-114.XIAO M, QIU X Y, LAN Q F. Study on the new technology of reduction roasting, magnetic separation and melting of high phosphorus oolitic hematite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-114.

    XIAO M, QIU X Y, LAN Q F. Study on the new technology of reduction roasting, magnetic separation and melting of high phosphorus oolitic hematite[J]. Multipurpose Utilization of Mineral Resources, 2020(5):101-114.

    [5]

    李国峰, 韩跃新, 高鹏, 等. 高磷鲕状赤铁矿深度还原过程中磷在金属相富集热力学研究[J]. 矿产综合利用, 2019(2):152-156.LI G F, HAN Y X, GAO P, et al. Thermodynamic study of phosphorus in metallic phase during coal-based reduction of high phosphorus oolitic hematite ore[J]. Multipurpose Utilization of Mineral Resources, 2019(2):152-156. doi: 10.3969/j.issn.1000-6532.2019.02.032

    LI G F, HAN Y X, GAO P, et al. Thermodynamic study of phosphorus in metallic phase during coal-based reduction of high phosphorus oolitic hematite ore[J]. Multipurpose Utilization of Mineral Resources, 2019(2):152-156. doi: 10.3969/j.issn.1000-6532.2019.02.032

    [6]

    韩跃新, 孙永升, 高鹏, 等. 高磷鲕状赤铁矿开发利用现状及发展趋势[J]. 金属矿山, 2012(3):1-5.HAN Y X, SUN Y S, GAO P, et al. Exploitation situation and development trend of high phosphorus oolitic hematite[J]. Metal Mine, 2012(3):1-5.

    HAN Y X, SUN Y S, GAO P, et al. Exploitation situation and development trend of high phosphorus oolitic hematite[J]. Metal Mine, 2012(3):1-5.

    [7]

    韩继康, 梁冰, 李国峰, 等. 某含磷铁矿的可选性试验研究[J]. 矿产综合利用, 2020(2):49-54.HAN J K, LIANG B, LI G F, et al. Preparability test of a phosphorus-bearing iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):49-54.

    HAN J K, LIANG B, LI G F, et al. Preparability test of a phosphorus-bearing iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(2):49-54.

    [8]

    吴世超, 孙体昌, 李正要, 等. 高磷铁矿石直接还原-磁选研究进展[J]. 金属矿山, 2021(2):58-64.WU S C, SUN T C, LI Z Y, et al. Research progress of direct reduction-magnetic separation of high phosphorus iron ore[J]. Metal Mine, 2021(2):58-64.

    WU S C, SUN T C, LI Z Y, et al. Research progress of direct reduction-magnetic separation of high phosphorus iron ore[J]. Metal Mine, 2021(2):58-64.

    [9]

    张奔, 赵志龙, 郭豪, 等. 气基竖炉直接还原炼铁技术的发展[J]. 钢铁研究, 2016, 44(5):59-62.ZHANG B, ZHAO Z L, GUO H, et al. Development of direct-reduction iron making technology in gas-based shaft furnace[J]. Research on Iron and Steel, 2016, 44(5):59-62.

    ZHANG B, ZHAO Z L, GUO H, et al. Development of direct-reduction iron making technology in gas-based shaft furnace[J]. Research on Iron and Steel, 2016, 44(5):59-62.

    [10]

    延黎, 黄武胜, 吴世超, 等. 某高磷鲕状铁矿石气基直接还原-磁选提铁降磷研究[J]. 矿冶工程, 2021, 41(1):72-75.YAN L, HUANG W S, WU S C, et al. High-phosphorus oolitic iron ore processed with gas-based direct reduction and magnetic separation for iron increasing and phosphorus reduction[J]. Mining and Metallurgical Engineering, 2021, 41(1):72-75.

    YAN L, HUANG W S, WU S C, et al. High-phosphorus oolitic iron ore processed with gas-based direct reduction and magnetic separation for iron increasing and phosphorus reduction[J]. Mining and Metallurgical Engineering, 2021, 41(1):72-75.

    [11]

    黄武胜, 延黎, 吴世超, 等. 国外某高磷鲕状铁矿石工艺矿物学研究[J]. 金属矿山, 2020(9):137-141.HUANG W S, YAN L, WU S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad[J]. Metal Mine, 2020(9):137-141. doi: 10.19614/j.cnki.jsks.202009019

    HUANG W S, YAN L, WU S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad[J]. Metal Mine, 2020(9):137-141. doi: 10.19614/j.cnki.jsks.202009019

    [12]

    唐珏. 高铬型钒钛磁铁矿气基竖炉直接还原-熔分新工艺基础研究[D]. 沈阳: 东北大学, 2017.TANG J. Fundamental study on innovative process of gas-based shaft furnace direct reduction-melting separation for high chromium vanadium-bearing titanomagnetite[D]. Shenyang: Northeastern University, 2017.

    TANG J. Fundamental study on innovative process of gas-based shaft furnace direct reduction-melting separation for high chromium vanadium-bearing titanomagnetite[D]. Shenyang: Northeastern University, 2017.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  328
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2021-05-10
刊出日期:  2024-02-25

目录