盐溶液法制备半水石膏的工艺研究及探讨

屈吉艳, 陈高祥, 刘芮村, 周勇, 罗建洪. 盐溶液法制备半水石膏的工艺研究及探讨[J]. 矿产综合利用, 2024, 45(3): 29-36. doi: 10.3969/j.issn.1000-6532.2024.03.005
引用本文: 屈吉艳, 陈高祥, 刘芮村, 周勇, 罗建洪. 盐溶液法制备半水石膏的工艺研究及探讨[J]. 矿产综合利用, 2024, 45(3): 29-36. doi: 10.3969/j.issn.1000-6532.2024.03.005
QU Jiyan, CHEN Gaoxiang, LIU Ruicun, ZHOU Yong, LUO Jianhong. Study and Discussion on Preparation of Hemihydrate Gypsum by Salt Solution Method[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 29-36. doi: 10.3969/j.issn.1000-6532.2024.03.005
Citation: QU Jiyan, CHEN Gaoxiang, LIU Ruicun, ZHOU Yong, LUO Jianhong. Study and Discussion on Preparation of Hemihydrate Gypsum by Salt Solution Method[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(3): 29-36. doi: 10.3969/j.issn.1000-6532.2024.03.005

盐溶液法制备半水石膏的工艺研究及探讨

  • 基金项目: 国家自然科学基金项目(21776181);国家重点研发计划项目(2018YFC1900203-03);四川大学创新星火计划项目(2018SCUH0012)
详细信息
    作者简介: 屈吉艳(1996-),女,在读研究生,研究方向为冶金工程
    通讯作者: 罗健洪(1978-),男,副教授,主要从事微通道萃取、结晶分离与纯化技术开发、含重金属废水处理技术开发。
  • 中图分类号: TD98; X754

Study and Discussion on Preparation of Hemihydrate Gypsum by Salt Solution Method

More Information
  • 这是一篇矿物材料领域的论文。利用脱硫石膏制备应用更为广泛的半水石膏对工业副产石膏的资源化利用有非常重要的作用,不仅可以避免对天然石膏的大量开采,还能实现对脱硫石膏的资源化利用。在脱硫石膏转化为半水石膏的过程中,以氯化钠和添加剂作为反应溶液,在常压下加热搅拌反应。研究了氯化钠浓度、添加剂浓度、固液比、转速和反应温度等因素对二水到半水石膏的相转化时间和晶体粒度的影响,氯化钠和添加剂浓度的增大,不仅会加快相转化过程,还对半水石膏晶体的平均长度和平均长径比有一定的抑制作用,而较高或较低的转速则会阻碍半水石膏晶体的成核和生长,过快或过慢的转速都会影响Ca2+和SO42-的碰撞频率,继而影响半水石膏的生成。降低固液比和升高温度也对相转化过程有一定的促进作用,在较低的温度下,由于相转化过程的驱动力不足,脱硫石膏难以转化为半水石膏。确定了脱硫石膏制备半水石膏的较佳工艺条件为:氯化钠浓度10%,添加剂浓度10%,固液比1:5,转速300 r/min,反应温度100 ℃。在较佳的工艺条件下,60 min即可完成反应。所制得的半水石膏晶体的平均长度高达127 μm,平均长径比高达19。同时,研究了溶液中水分子活度、过饱和度和反应温度的关系,确定了相转化过程由温度和过饱和度所决定。

  • 加载中
  • 图 1  预处理后脱硫石膏的XRD

    Figure 1. 

    图 2  预处理后脱硫石膏的SEM

    Figure 2. 

    图 3  氯化钠浓度对反应时间的影响

    Figure 3. 

    图 4  氯化钠浓度对半水石膏平均长度、宽度和长径比的影响

    Figure 4. 

    图 5  添加剂浓度对反应时间的影响

    Figure 5. 

    图 6  添加剂浓度对半水石膏平均长度、宽度和长径比的影响

    Figure 6. 

    图 7  固液比对反应时间的影响

    Figure 7. 

    图 8  固液比对半水石膏平均长度、宽度和长径比的影响

    Figure 8. 

    图 9  转速对反应时间的影响

    Figure 9. 

    图 10  反应温度对反应时间的影响

    Figure 10. 

    图 11  无水、半水和二水石膏在0~150 ℃的溶解度曲线

    Figure 11. 

    图 12  二水石膏向半水石膏的转化过程

    Figure 12. 

    图 13  半水石膏的SEM

    Figure 13. 

    图 14  半水石膏的XRD

    Figure 14. 

    图 15  半水石膏的FTIR

    Figure 15. 

    图 16  水分子活度与温度的关系

    Figure 16. 

    图 17  100 ℃下过饱和度与水分子活度的关系

    Figure 17. 

    表 1  预处理后脱硫石膏的化学组成/%

    Table 1.  Chemical composition of pretreated FGD gypsum

    CaOSO3H2OFe2O3Al2O3MgO其他
    36.2042.8020.340.140.390.090.04
    下载: 导出CSV

    表 2  不同工艺条件下的结晶水含量

    Table 2.  Content of crystal water under different conditions

    添加剂
    浓度/%
    氯化钠
    浓度/%
    固液比 转速/
    (r/min)
    温度/
    结晶水
    含量/%
    0 10 1∶5 300 100 16.55
    0 11 1∶5 300 100 6.86
    0 12 1∶5 300 100 5.60
    0 13 1∶5 300 100 6.42
    0 14 1∶5 300 100 6.81
    6 10 1∶5 300 100 6.42
    8 10 1∶5 300 100 6.55
    10 10 1∶5 300 100 5.32
    12 10 1∶5 300 100 6.11
    14 10 1∶5 300 100 5.64
    10 8 1∶5 300 100 6.05
    10 9 1∶5 300 100 5.60
    10 10 1∶5 300 100 5.32
    10 11 1∶5 300 100 5.57
    10 12 1∶5 300 100 5.48
    10 10 1∶3 300 100 6.54
    10 10 1∶4 300 100 5.82
    10 10 1∶5 300 100 5.32
    10 10 1∶6 300 100 6.22
    10 10 1∶7 300 100 6.27
    10 10 1∶5 200 100 5.52
    10 10 1∶5 300 100 5.32
    10 10 1∶5 400 100 6.05
    10 10 1∶5 500 100 6.31
    10 10 1∶5 600 100 5.54
    10 10 1∶5 300 94 16.38
    10 10 1∶5 300 96 6.34
    10 10 1∶5 300 98 5.50
    10 10 1∶5 300 100 5.32
    10 10 1∶5 300 102 6.17
    下载: 导出CSV
  • [1]

    Ma X, Tan H, He X, Preparation and surface modification of anhydrous calcium sulfate whiskers from FGD gypsum in autoclave-free hydrothermal system. energy sources, part a: recovery[J]. Utilization and Environmental Effects, 2018, 40:2055-2062. doi: 10.1080/15567036.2018.1487481

    [2]

    杨后文, 刘丰, 江郡, 等. 常压水热法制备半水脱硫石膏的工艺因素研究[J]. 矿产综合利用, 2021(1):140-143.YANG H W, LIU F, JIANG J, et al. Research on process condition on the preparation of hemihydrate desulfurization gypsum with hydrothermal method under atmospheric pressure[J]. Multipurpose Utilization of Mineral Resources, 2021(1):140-143. doi: 10.3969/j.issn.1000-6532.2021.01.024

    YANG H W, LIU F, JIANG J, et al. Research on process condition on the preparation of hemihydrate desulfurization gypsum with hydrothermal method under atmospheric pressure[J]. Multipurpose Utilization of Mineral Resources, 2021(1):140-143. doi: 10.3969/j.issn.1000-6532.2021.01.024

    [3]

    Guan Q, Tang H, Sun W, et al. Insight into influence of glycerol on preparing α-CaSO4·1/2H2O from flue gas desulfurization gypsum in glycerol-water solutions with succinic acid and NaCl[J]. Industrial and Engineering Chemistry Research, 2017, 56:9831-9838.

    [4]

    Guan, Q. J, Sun, W, Hu, Y. H, et al. Synthesis of α-CaSO4·0.5H2O from flue gas desulfurization gypsum regulated by C4H4O4Na2·6H2O and NaCl in glycerol-water solution[J]. RSC Advances, 2017(7):27807-27815.

    [5]

    Guan, Q, Sun, W, Hu, Y, et al. A facile method of transforming FGD gypsum to α-CaSO4·0.5H2O whiskers with cetyltrimethylammonium bromide (CTAB) and KCl in glycerol-water solution[J]. Scientific Reports, 2017(7):1-11.

    [6]

    Xiangbin Sun, Genlei Zhang, Peng Cui. Aspect ratio-controlled preparation of α-CaSO4·0.5H2O from phosphogypsum in potassium tartrate aqueous solution[J]. RSC Advances, 2019, 9(38):21601-21607. doi: 10.1039/C9RA03569A

    [7]

    Yin S, Yang L. Α or Β?-Hemihydrates transformed from dihydrate calcium sulfate in a salt-mediated glycerol–water solution[J]. Journal of Crystal Growth, 2020, 550:125885. doi: 10.1016/j.jcrysgro.2020.125885

    [8]

    Miao S, Yu B, Ren Y, Cai C. Solubility and physical properties of calcium sulfate dihydrate in NaCl and glycerol aqueous solution at 303.15, 323.15, and 343.15 K[J]. Journal of Chemical and Engineering Data, 2020, 65:2703-2711. doi: 10.1021/acs.jced.0c00052

    [9]

    Abdel-Aal E A, Rashad M M, El-Shall H. Crystallization of calcium sulfate dihydrate at different supersaturation ratios and different free sulfate concentrations[J]. Crystal Research and Technology, 2004, 39:313-321. doi: 10.1002/crat.200310188

    [10]

    赵俊梅, 张金山, 李侠. 脱硫石膏常压盐溶液法制备半水石膏的试验研究[J]. 非金属矿, 2012, 35(2):33-35.ZHAO J M, ZHANG J S, LI X. Experimental study on the preparation of hemihydrate gypsum from desulfurization gypsum with hydrothermal method[J]. Non-Metallic Mines, 2012, 35(2):33-35. doi: 10.3969/j.issn.1000-8098.2012.02.011

    ZHAO J M, ZHANG J S, LI X. Experimental study on the preparation of hemihydrate gypsum from desulfurization gypsum with hydrothermal method[J]. Non-Metallic Mines, 2012, 35(2):33-35. doi: 10.3969/j.issn.1000-8098.2012.02.011

    [11]

    Ru X, Ma B, Huang J, et al. Phosphogypsum transition to α-calcium sulfate hemihydrate in the presence of omongwaite in nacl solutions under atmospheric pressure[J]. Journal of the American Ceramic Society, 2012, 95:3478-3482.

    [12]

    Guan, B, Jiang, G, Fu, H, et al. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol-water solution under mild conditions[J]. Industrial and Engineering Chemistry Research, 2011, 50:13561-13567. doi: 10.1021/ie201040y

    [13]

    Guan, Q, Sui, Y, Zhang, F, et al. Preparation of α-calcium sulfate hemihydrate from industrial byproduct gypsum: a review[J]. Physicochemical Problems of Mineral Processing, 2021, 57:168-181. doi: 10.37190/ppmp/139511

    [14]

    Sun, X, Li, Z, Wang, X, et al. Single-crystal regular hexagonal microplates of two-dimensional α-Calcium sulfate hemihydrate preparation from phosphogypsum in Na2SO4 aqueous solution[J]. Industrial and Engineering Chemistry Research, 2020, 59:13979-13987. doi: 10.1021/acs.iecr.0c01555

    [15]

    李松. 硫酸钠固废制备α-半水石膏及水化性能研究[D]. 北京: 北京化工大学, 2019.LI S. Preparation of α-hemihydrate gypsumby sodium sulfate solid waste and its hydration properties[D]. Beijing: Beijing University of Chemical Technology, 2019.

    LI S. Preparation of α-hemihydrate gypsumby sodium sulfate solid waste and its hydration properties[D]. Beijing: Beijing University of Chemical Technology, 2019.

    [16]

    Cao, B, Wang, X, Zhang, X, et al. A readily monitored and controllable hydrothermal system for the facile, cost-effective transformation of FGD gypsum to calcium sulfate hemihydrate whiskers[J]. Particuology, 2020.

  • 加载中

(17)

(2)

计量
  • 文章访问数:  936
  • PDF下载数:  151
  • 施引文献:  0
出版历程
收稿日期:  2022-08-18
刊出日期:  2024-06-25

目录