-
摘要:
这是一篇矿物加工工程领域的论文。以新疆某次火山岩型铍矿石为研究对象,进行矿物组成、元素组成分析,查明有用矿物的嵌布粒度及赋存状态,并进行系统的浮选实验。在磨矿过程加入活化剂氟化钠,对磨矿细度、浮选药剂制度进行了优化,当磨矿细度为-0.074 mm 85%、pH值调整剂碳酸钠、抑制剂硅酸钠、捕收剂油酸钠用量分别为1 500、1 000、2 000 g/t时,可以获得粗选精矿BeO品位6.03%、回收率97.02%的粗选指标。将粗选精矿再磨至-0.045 mm 90%,通过两次精选实验,精矿BeO品位达到8.40%,精矿BeO回收率为78.09%,粗选尾矿经过一次扫选实验,尾矿BeO含量可降至0.003%。“一粗一扫三精、中矿集中返回粗选”的浮选闭路实验,获得了精矿BeO品位8.12%、回收率80.99%的浮选指标,可以实现羟硅铍石的较好富集,满足我国当今铍冶炼工艺对原料BeO含量的要求。
Abstract:This is an article in the field of mineral processing engineering. The volcanic bertrandite ore used in this study was obtained from Xinjiang, China. Mineral and multi-elemental compositions were characterized to identify the disseminated grain size and occurrence of valuable minerals, and systematic flotation tests were carried out. In the presence of activator sodium fluoride in the grinding process, grinding fineness and reagents dosages were optimized. It was shown that with grinding fineness of -0.074 mm 85%, dosages of pH regulator sodium carbonate, inhibitor sodium silicate, and collector sodium oleate of 1 500 g/t, 1 000 g/t, and 2 000 g/t respectively, a coarse concentrate was generated with BeO grade of 6.03% and recovery of 97.02%.This coarse concentrate was reground to -0.045 mm 90% and enriched by two cleaning stages yielding a clean concentrate assaying 8.40% BeO with a BeO recovery of 78.09%, while BeO content of the coarse tailing was degraded to 0.003% after one scavenger flotation. The closed-circuit flotation test of "one-coarse, one-scavenger, three-cleaning separation, and integrated middling recirculated to coarse separation" has generated a concentrate with BeO grade of 8.12% and recovery of 80.99%, meeting the requirements of beryllium process for BeO content in raw materials .
-
Key words:
- Mineral processing engineering /
- Bertrandite /
- Flotation reagents /
- Grade /
- Beneficiation /
- Grinding fineness
-
表 1 原矿的矿物组成分析结果/%
Table 1. Mineral composition of the raw samples
羟硅铍石 金红石 赤铁矿 方铅矿 独居石 黄铁矿 氟碳铈镧矿 锆石 萤石 2.78 0.24 0.14 <0.01 0.01 0.01 0.01 0.01 1.40 石英 钠长石 钾长石 伊利石 绿泥石 方解石 闪石类 其他 — 38.34 29.22 15.19 8.64 2.85 0.10 0.21 0.84 — 表 2 原矿化学多元素分析结果/%
Table 2. Multi-elemental compositionn of the raw samples
Be SiO2 TFe Al2O3 MgO CaO Mn K Na F 0.42 63.80 2.72 14.68 0.35 3.05 0.19 2.81 2.69 1.5 表 3 浮选开路实验结果
Table 3. Flotation open-circuit test results
样品名称 产率/% BeO品位/% BeO回收率/% 精矿 10.97 8.40 78.09 中矿2 3.01 2.23 5.69 中矿1 5.85 2.67 13.24 扫精 2.67 1.23 2.78 尾矿 77.50 0.003 0.20 原矿 100.00 1.18 100.00 -
[1] 李爱民, 蒋进光, 王晖, 等. 含铍矿物浮选研究现状与展望[J]. 稀有金属与硬质合金, 2008(3):58-61.LI A M, JIANG J G, WANG H, et al. The latest development and prospects of beryllium minerals flotation[J]. Rare Metals and Cemented Carbides, 2008(3):58-61. doi: 10.3969/j.issn.1004-0536.2008.03.015
LI A M, JIANG J G, WANG H, et al. The latest development and prospects of beryllium minerals flotation[J]. Rare Metals and Cemented Carbides, 2008(3):58-61. doi: 10.3969/j.issn.1004-0536.2008.03.015
[2] 许秀婷, 教镇渤, 海国泉, 等. 铍矿产业发展现状[J]. 新疆有色金属, 2021, 44(1):4-8.XU X T, JIAO Z B, HAI G Q, et al. Development of beryllium ore industry[J]. Xinjiang Nonferrous Metals, 2021, 44(1):4-8.
XU X T, JIAO Z B, HAI G Q, et al. Development of beryllium ore industry[J]. Xinjiang Nonferrous Metals, 2021, 44(1):4-8.
[3] 张玲, 林德松. 我国稀有金属资源现状分析[J]. 地质与勘探, 2004(1):26-30.ZHANG L, LIN D S. Current situation of rare metal resources in China[J]. Geology and Prospecting, 2004(1):26-30. doi: 10.3969/j.issn.0495-5331.2004.01.006
ZHANG L, LIN D S. Current situation of rare metal resources in China[J]. Geology and Prospecting, 2004(1):26-30. doi: 10.3969/j.issn.0495-5331.2004.01.006
[4] 罗丽萍, 胡军亮, 谭洪旗, 等. 川西上基拱伟晶岩型铍矿绿柱石矿物化学特征[J]. 矿产综合利用, 2021(5):113-119.LUO L P, HU J L, TAN H Q, et al. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):113-119. doi: 10.3969/j.issn.1000-6532.2021.05.017
LUO L P, HU J L, TAN H Q, et al. Mineralogical characteristics of the pegmatite type beryl in Shangjigong, Western Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2021(5):113-119. doi: 10.3969/j.issn.1000-6532.2021.05.017
[5] 李娜, 高爱红, 王小宁. 全球铍资源供需形势及建议[J]. 中国矿业, 2019, 28(4):69-73.LI N, GAO A H, WANG X N. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 2019, 28(4):69-73. doi: 10.12075/j.issn.1004-4051.2019.04.028
LI N, GAO A H, WANG X N. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 2019, 28(4):69-73. doi: 10.12075/j.issn.1004-4051.2019.04.028
[6] 王仁财, 邢佳韵, 彭浩. 美国铍资源战略启示[J]. 中国矿业, 2014, 23(10):21-24.WANG R C, XING J Y, PENG H. Enlightenment of United States’ beryllium resources strategy[J]. China Mining Magazine, 2014, 23(10):21-24. doi: 10.3969/j.issn.1004-4051.2014.10.006
WANG R C, XING J Y, PENG H. Enlightenment of United States’ beryllium resources strategy[J]. China Mining Magazine, 2014, 23(10):21-24. doi: 10.3969/j.issn.1004-4051.2014.10.006
[7] 李卫. 高氟铍矿石的冶炼工艺研究[D]. 长沙: 中南大学, 2003.LI W. Study on smelting technology of high-fluorine beryllium ore[D]. Changsha: Central South University, 2003.
LI W. Study on smelting technology of high-fluorine beryllium ore[D]. Changsha: Central South University, 2003.
[8] 郑元泽. 捕收剂预先混合对羟硅铍石浮选的影响探讨[J]. 世界有色金属, 2020(10):271-272.ZHENG Y Z. Effect of collector premixing on flotation of beryllium silicate[J]. World Nonferrous Metals, 2020(10):271-272. doi: 10.3969/j.issn.1002-5065.2020.10.128
ZHENG Y Z. Effect of collector premixing on flotation of beryllium silicate[J]. World Nonferrous Metals, 2020(10):271-272. doi: 10.3969/j.issn.1002-5065.2020.10.128
[9] 耿志强, 孙伟. 碱性调整剂在某羟硅铍石浮选中的应用研究[J]. 有色金属工程, 2018, 8(3):90-94.GENG Z Q, SUN W. Application of alkaline regulator in bertrandite flotation[J]. Nonferrous Metals Engineering, 2018, 8(3):90-94. doi: 10.3969/j.issn.2095-1744.2018.03.019
GENG Z Q, SUN W. Application of alkaline regulator in bertrandite flotation[J]. Nonferrous Metals Engineering, 2018, 8(3):90-94. doi: 10.3969/j.issn.2095-1744.2018.03.019
[10] 耿志强, 黄红军, 孙伟. 某羟硅铍石矿中浮选富集含铍矿物的试验研究[J]. 矿冶工程, 2018, 38(4):54-56+60.GENG Z Q, HUANG H J, SUN W. Reclaiming of beryllium minerals from bertrandite ore by flotation[J]. Miningand Metallurgical Engineering, 2018, 38(4):54-56+60. doi: 10.3969/j.issn.0253-6099.2018.04.013
GENG Z Q, HUANG H J, SUN W. Reclaiming of beryllium minerals from bertrandite ore by flotation[J]. Miningand Metallurgical Engineering, 2018, 38(4):54-56+60. doi: 10.3969/j.issn.0253-6099.2018.04.013
[11] T Ito J, et al. The structure of bertrandite (H2Be4Si2O9)[J]. Zeitschrift für Kristallographie -Crystalline Materials, 1932, 83(1-6):384-393.
[12] 耿志强, 孙伟. 捕收剂预先混合对新疆某羟硅铍石浮选的影响[J]. 矿产保护与利用, 2019, 39(2):10-13.GENG Z Q, SUN W. Experimental study on flotation Xinjiang bertrandite using combination collectors[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2):10-13.
GENG Z Q, SUN W. Experimental study on flotation Xinjiang bertrandite using combination collectors[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2):10-13.
[13] 朱一民. 2019年浮选药剂的进展[J]. 矿产综合利用, 2020(5):1-17.ZHU Y M. The development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5):1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001
ZHU Y M. The development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5):1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001
[14] 郑元泽. 简述碱性调整剂在羟硅铍石浮选中的运用[J]. 冶金管理, 2020(9): 30+32.ZHENG Y Z. Application of alkaline regulator in flotation of bertrandite[J]. Metallurgical Management, 2020(9): 30+32.
ZHENG Y Z. Application of alkaline regulator in flotation of bertrandite[J]. Metallurgical Management, 2020(9): 30+32.
[15] 李月湘, 衣龙升, 田建吉. 新疆杨庄产铍岩体岩石地球化学特征及其成因探讨[C]. 高校地质学报, 2013: 318-319.LI Y X, YI L S, TIAN J J. Petrogeochemical characteristics and genesis of beryllium-producing rock mass in Yangzhuang, Xinjiang[C]. Editorial Office of Geological Journal of China Universities, 2013: 318-319.
LI Y X, YI L S, TIAN J J. Petrogeochemical characteristics and genesis of beryllium-producing rock mass in Yangzhuang, Xinjiang[C]. Editorial Office of Geological Journal of China Universities, 2013: 318-319.
[16] 肖艳东, 黄建华, 王哲, 等. 新疆和布克赛尔县白杨河铀、铍矿床空间分布特征[J]. 西部探矿工程, 2011, 23(9):123-126.XIAO Y D, HUANG J H, WANG Z, et al. Spatial distribution characteristics of Baiyanghe uranium and beryllium deposits in Xinjiang and Buxail County[J]. Western Prospecting Project, 2011, 23(9):123-126. doi: 10.3969/j.issn.1004-5716.2011.09.041
XIAO Y D, HUANG J H, WANG Z, et al. Spatial distribution characteristics of Baiyanghe uranium and beryllium deposits in Xinjiang and Buxail County[J]. Western Prospecting Project, 2011, 23(9):123-126. doi: 10.3969/j.issn.1004-5716.2011.09.041
[17] 李光来, 陈光旭, 刘晓东, 等. 雪米斯坦成矿带杨庄岩体中含铀矿物特征及其对铀成矿的指示[J]. 地质学报, 2020, 94(11):3404-3420.LI G L, CHEN G X, LIU X D, et al. Characteristics of uranium-bearing minerals in Yangzhuang granite porphyry in the Xuemistan metallogenic belt and its significance for uranium metallogenesis[J]. Acta Geologica Sinica, 2020, 94(11):3404-3420. doi: 10.3969/j.issn.0001-5717.2020.11.015
LI G L, CHEN G X, LIU X D, et al. Characteristics of uranium-bearing minerals in Yangzhuang granite porphyry in the Xuemistan metallogenic belt and its significance for uranium metallogenesis[J]. Acta Geologica Sinica, 2020, 94(11):3404-3420. doi: 10.3969/j.issn.0001-5717.2020.11.015
[18] 王谋, 李晓峰, 王果, 等. 新疆雪米斯坦火山岩带白杨河铍铀矿床地质特征[J]. 矿产勘查, 2012, 3(1):34-40.WANG M, LI X F, WANG G, et al. Geological characteristics of Baiyanghe beryllium-uraniumdeposits in Xuemisitan volcanic belt, Xinjiang[J]. Mineral Exploration, 2012, 3(1):34-40. doi: 10.3969/j.issn.1674-7801.2012.01.009
WANG M, LI X F, WANG G, et al. Geological characteristics of Baiyanghe beryllium-uraniumdeposits in Xuemisitan volcanic belt, Xinjiang[J]. Mineral Exploration, 2012, 3(1):34-40. doi: 10.3969/j.issn.1674-7801.2012.01.009