长江中游典型河湖湿地主要水环境问题及生态环境地质风险评价区划

刘广宁,吴 亚,王世昌,廖 金,余绍文,伏永朋,杜 尧,陈柳竹. 2022. 长江中游典型河湖湿地主要水环境问题及生态环境地质风险评价区划. 华南地质, 38(2): 226-239. doi: 10.3969/j.issn.2097-0013.2022.02.004
引用本文: 刘广宁,吴 亚,王世昌,廖 金,余绍文,伏永朋,杜 尧,陈柳竹. 2022. 长江中游典型河湖湿地主要水环境问题及生态环境地质风险评价区划. 华南地质, 38(2): 226-239. doi: 10.3969/j.issn.2097-0013.2022.02.004
LIU Guang-Ning. 2022. The Main Water Environmental Issues and Assessment-zonation of Eco-environmental Geology Risks for Typical River-lake-wetland Systems in the Central Yangtze River. South China Geology, 38(2): 226-239. doi: 10.3969/j.issn.2097-0013.2022.02.004
Citation: LIU Guang-Ning. 2022. The Main Water Environmental Issues and Assessment-zonation of Eco-environmental Geology Risks for Typical River-lake-wetland Systems in the Central Yangtze River. South China Geology, 38(2): 226-239. doi: 10.3969/j.issn.2097-0013.2022.02.004

长江中游典型河湖湿地主要水环境问题及生态环境地质风险评价区划

  • 基金项目:

    中国地质调查局项目(DD20190263)、国家自然科学基金项目(41702258)、古生物与地质环境演化湖北省重点实验室开放研究课题重点项目(PEL-202102)

详细信息
    作者简介: 刘广宁(1980—),男,硕士,正高级工程师,主要从事水工环地质调查研究,E-mail:guangning1123@163.com
  • 中图分类号: P642;X141

The Main Water Environmental Issues and Assessment-zonation of Eco-environmental Geology Risks for Typical River-lake-wetland Systems in the Central Yangtze River

  • 为查明长江中游河湖湿地主要生态环境地质问题,选取鄱阳湖、洞庭湖、丹江口库区官山河流域等典型工作区开展了综合地质调查。从区域、流域尺度查明工作区主要水环境问题、评估官山河生态环境地质风险是项目主要任务之一,结果表明:(1)江汉- 洞庭平原及鄱阳湖平原赋存区域性原生高砷、铵、铁、锰地下水,鄱阳湖平原发育高碘地下水;江汉- 洞庭平原出现高磷地下水;Fe(Ⅲ)还原溶解是高砷、磷地下水形成的主要过程,微生物介导的有机质降解是高铵、磷、碘地下水形成的主要因素;土壤N、生活污水和化肥是鄱阳湖平原地下水硝酸盐主要来源;在洞庭湖平原,受污染的地下水向地表水排泄增加了后者污染物载荷,潜在的导致地表水污染。(2)官山河流域地表水体总氮、总磷浓度多劣于Ⅲ类水质标准,导致水质劣于Ⅲ类标准,有机氮对总氮贡献较大;其子流域存在不同等级的土壤侵蚀、地质灾害、人为污染、饮用水源、水环境、水生态、水生境风险。上述成果提升了典型河湖湿地区地质调查工作精度,为长江中游生态环境保护修复及水资源管理提供科学依据,支撑了长江大保护与长江经济带战略。
  • 加载中
  • [1]

    国务院.2014. 国务院关于依托黄金水道推动长江经济带发展的指导意见(国发[2014]39 号)[EB/OL].http://www.gov.cn/zhengce/content/2014-09/25/content_9092.htm.

    [2]

    胡 玉, 帅 钰, 杜 永, 任良锁, 吴承明, 丁爱中.2019. 丹江口库区神定河水质污染成因分析[J]. 人民长江,50(11):44-48.

    [3]

    黄艳雯, 杜 尧, 徐 宇, 陶艳秋, 邓娅敏, 马 腾.2020. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报,39(6):165-174.

    [4]

    李 典, 邓娅敏, 杜 尧, 颜港归, 孙晓梁, 范红晨.2021. 长江中游河湖平原浅层地下水中砷空间异质性的同位素指示[J]. 地球科学,46(12):4492-4502.

    [5]

    梁 杏, 张婧玮, 蓝 坤, 沈 帅, 马 腾.2020. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报,39(1):21-33.

    [6]

    罗义鹏, 邓娅敏, 杜 尧, 薛江凯, 孙晓梁.2022. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学,47(2):662-673.

    [7]

    聂 京, 夏东升.2014. 丹江口库区及其上游流域水质污染特征及评价[J]. 环境监测管理与技术,26(4):31-34+62.

    [8]

    王丽婧, 郑丙辉, 王圣瑞, 李 虹.2017. 长江经济带建设背景下“两湖”生态环境保护的问题与对策[J]. 环境保护,45(15):27-31.

    [9]

    徐雨潇, 郑天亮, 高 杰, 邓娅敏, 蒋宏忱.2021. 江汉平原浅层含水层中土著硫酸盐还原菌对砷迁移释放的影响[J]. 地球科学,46(2):652-660.

    [10]

    薛江凯, 邓娅敏, 杜尧, 罗义鹏, 程一涵.2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学,46(11):4140-4149.

    [11]

    杨达源.2006. 长江地貌过程[M]. 北京: 地质出版社.

    [12]

    中国共产党中央委员会.2016. 长江经济带发展规划纲要[EB/OL]. http://baike.so.com/doc/25121588-26103009.html.

    [13]

    朱 惇, 徐建锋, 湛若云, 张乐群.2019. 官山河流域氮素非点源输出负荷时空分布模拟研究[A]. 中国水利学会2019 学术年会论文集第五分册,213-219.

    [14]

    Appelo C A J, Van Der Weiden M J J, Tournassat C, Charlet L. 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J]. Environmental Science & Technology, 36(14):3096-3103.

    [15]

    Bauer M, Blodau C. 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments [J]. Science of Total Environment, 354(2-3):179-190.

    [16]

    Boutton T W, Archer S R, Midwood A, Zitzer S F, Bol R. 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem [J]. Geoderma, 82:5-41.

    [17]

    Cerling T E, Solomon D K, Quade J, Bowman J R. 1991. On the isotopic composition of carbon in soil carbon dioxide [J]. Geochimica et Cosmochimica Acta, 55:3403-3405.

    [18]

    Deng Y M, Zheng T L, Wang Y X, Liu L, Jiang H C, Ma T. 2018. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin [J]. Science of The Total Environment., 619-620:1247-1258.

    [19]

    Du Y, Deng Y M, Ma T, Lu Z J, Shen S, Gan Y Q, Wang Y X. 2018. Hydrogeochemical evidences for targeting sources of safe groundwater supply in arsenic-affected multi-level aquifer systems [J]. Science of The Total Environment, 645:1159-1171.

    [20]

    Duan Y H, Gan Y Q, Wang Y X, Liu C X, Yu K, Deng Y M, Zhao K, Dong C J. 2017. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China [J]. Science of The Total Environment, 607-608:992-1000.

    [21]

    Duan Y H, Schaefer M V, Wang Y X, Gan Y Q, Yu K, Deng Y M, Fendorf S. 2019. Experimental constraints on redox-induced arsenic release and retention from aquifer sediments in the central Yangtze River Basin [J]. Science of The Total Environment, 649:629-639.

    [22]

    Gao J, Zheng T L, Deng Y M, Jiang H C. 2021. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction [J]. Science of The Total Environment, 768:144709.

    [23]

    Ghosh A, Sáez A E, Ela W. 2006. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals [J]. Science of The Total Environment, 363(1-3):46-59.

    [24]

    Heidmann I, Christl I, Leu C, Kretzschmar R. 2005. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling [J]. Journal of Colloid and Interface Science, 282(2):270-282.

    [25]

    Huang Y W, Du Y, Ma T, Deng Y M, Tao Y Q, Xu Y, Leng Z C. 2021. Dissolved organic matter characterization in high and low ammonium groundwater of Dongting Plain, Central China [J]. Ecotoxicology and Environmental Safety, 208:111779.

    [26]

    Li J X, Zhou H L, Qian K, Xie X J, Xue X B, Yang Y J, Wang Y X. 2017. Fluoride and iodine enrichment in groundwater of North China Plain: Evidences from speciation analysis and geochemical modeling [J]. Science of The Total Environment, 598:239-248.

    [27]

    Mukherjee A, Bhattacharya P, Shi F, Fryar A E, Mukherjee A B, Xie Z M, Jacks G, Bundschuh J. 2009. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India) [J]. Applied Geochemistry, 24(10):1835-1851.

    [28]

    Roy S, Gaillardet J, Allègre C J. 1999. Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering [J]. Geochimica et Cosmochimica Acta, 63(9):1277-1292.

    [29]

    Sharma P, Rolle M, Kocar B, Fendorf S, Kappler A. 2011. Influence of natural organic matter on As transport and retention [J]. Environmental Science & Technology, 45(2):546-553.

    [30]

    Sun L Q, Liang X, Jin M G, Zhang X. 2022. Sources and fate of excessive ammonium in the Quaternary sediments on the Dongting Plain, China [J]. Science of The Total Environment, 806:150479.

    [31]

    Tao Y Q, Deng Y M, Du Y, Xu Y, Leng Z C, Ma T, Wang Y X. 2020. Sources and enrichment of phosphorus in groundwater of the Central Yangtze River Basin [J]. Science of The Total Environment, 737:139837.

    [32]

    Telmer K, Veizer J. 1999. Carbon fluxes, PCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives [J]. Chemical Geology, 159:61-86.

    [33]

    Wang Y X, Li J X, Ma T, Xie X J, Deng Y M, Gan Y Q. 2021. Genesis of geogenic contaminated groundwater: As, F and I [J]. Critical Reviews in Environmental Science and Technology, 51:2895-2933.

    [34]

    Wu Y, Wang Y X. 2 0 1 4 . Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, northern China [J]. Environmental Science: Processes & Impacts, 16(6):1469-1479.

    [35]

    Wu Y, Luo Z H, Luo W, Ma T, Wang Y X. 2018. Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region [J]. Journal of Contaminant Hydrology, 218:44-58.

    [36]

    Xiong Y J, Du Y, Deng Y M, Ma T, Li D, Sun X L, Liu G N, Wang Y X. 2021. Contrasting sources and fate of nitrogen compounds in different groundwater systems in the Central Yangtze River Basin [J]. Environmental Pollution, 290:118119.

    [37]

    Xue J K, Deng Y M, Luo Y P, Du Y, Yang Y J, Cheng Y H, Xie X J, Gan Y Q, Wang Y X. 2022. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin [J]. Science of The Total Environment, 814:151930.

    [38]

    Yang Y J, Yuan X F, Deng Y M, Xie X J, Gan Y Q, Wang Y X. 2020a. Seasonal dynamics of dissolved organic matter in high arsenic shallow groundwater systems [J]. Journal of Hydrology, 589:125120.

    [39]

    Yang Y J, Deng Y M, Xie X J, Gan Y Q, Li J X. 2020b. Iron isotope evidence for arsenic mobilization in shallow multi-level alluvial aquifers of Jianghan Plain, central China [J]. Ecotoxicology and Environmental Safety, 206:111120.

    [40]

    Zheng T L, Deng Y M, Wang Y X, Jiang H C, O’Loughlin E J, Flynn T M, Gan Y Q, Ma T. 2019. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems [J]. Journal of Hazardous Materials, 367:109-119.

    [41]

    Zheng T L, Deng Y M, Wang Y X, Jiang H C, Xie X J, Gan Y Q. 2020. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China [J]. Science of The Total Environment, 735:139327.

  • 加载中
计量
  • 文章访问数:  1053
  • PDF下载数:  113
  • 施引文献:  0
出版历程
收稿日期:  2021-04-08
修回日期:  2021-05-05

目录