江南造山带钨锡稀有金属矿床成矿作用特征

陆建军, 章荣清, 黄旭栋, 张 强, 李晓宇, 周维法, 黄 迪, 黄 玉, 马东升, 姜耀辉. 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359-381. doi: 10.3969/j.issn.2097-0013.2022.03.001
引用本文: 陆建军, 章荣清, 黄旭栋, 张 强, 李晓宇, 周维法, 黄 迪, 黄 玉, 马东升, 姜耀辉. 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359-381. doi: 10.3969/j.issn.2097-0013.2022.03.001
LUJian-Jun, ZHANGRong-Qing, HUANGXu-Dong, ZHANGQiang, LIXiao-Yu, ZHOUWei-Fa, HUANGDi, HUANGYu, MADong-Sheng, JIANGYao-Hui. 2022. Metallogenic Characteristics of Tungsten, Tin, and Rare Metal Deposits in the Jiangnan Orogenic Belt. South China Geology, 38(3): 359-381. doi: 10.3969/j.issn.2097-0013.2022.03.001
Citation: LUJian-Jun, ZHANGRong-Qing, HUANGXu-Dong, ZHANGQiang, LIXiao-Yu, ZHOUWei-Fa, HUANGDi, HUANGYu, MADong-Sheng, JIANGYao-Hui. 2022. Metallogenic Characteristics of Tungsten, Tin, and Rare Metal Deposits in the Jiangnan Orogenic Belt. South China Geology, 38(3): 359-381. doi: 10.3969/j.issn.2097-0013.2022.03.001

江南造山带钨锡稀有金属矿床成矿作用特征

  • 基金项目:

    国家自然科学基金(41830428)、关键地球物质循环前沿科学中心“科技人才团队”项目、中央高校基本科研业务费专项资金(2022300192)

详细信息
    作者简介: 陆建军(1962—),男,教授,博士生导师,主要从事花岗岩成岩成矿作用研究,E-mail:lujj@nju.edu.cn
  • 中图分类号: P617;P611

Metallogenic Characteristics of Tungsten, Tin, and Rare Metal Deposits in the Jiangnan Orogenic Belt

  • 江南造山带是世界上重要的钨锡稀有金属成矿带之一,发育矽卡岩型钨/锡矿、细脉浸染型钨矿、石英脉型黑钨矿/白钨矿、电气石-石英脉型锡矿、云英岩型钨/锡矿和花岗岩-伟晶岩型铌钽矿床,成矿时代包括新元古代、加里东期、印支期和燕山期。依据成矿元素组合,可将成矿花岗岩划分为W-Mo、W、Sn和Nb-Ta花岗岩,其演化程度和地球化学特征显示出明显差异,铌钽矿化发生在极端分异的钠长石花岗岩中。不同时代、不同类型的成矿花岗岩可能来自不同源区的部分熔融,江南造山带可能存在多个稀有金属富集的源区。成矿物质和成矿流体主要源自花岗质岩浆,岩浆分异演化促进了成矿元素在熔体中的富集。铌钽矿主要为岩浆成因,叠加热液矿化,钨锡矿主要通过流体充填和交代作用形成。
  • 加载中
  • [1]

    陈 骏. 2019.关键金属超常富集成矿和高效利用[J].科技导报,37(24):1.

    [2]

    陈国华,舒良树,舒立旻,张 诚,欧阳永棚.2015.江南东段朱溪钨(铜)多金属矿床的地质特征与成矿背景[J].中国科学:地球科学,45(12):1799-1818+1-6.

    [3]

    陈文迪,张文兰,王汝成,储著银,肖 荣,张 迪,车旭东,2016.桂北苗儿山-越城岭地区独石岭钨(铜)矿床研究:对复式岩体多时代差异性成矿的启示[J].中国科学:地球科学,46(12):1602-1625.

    [4]

    陈雪霏,汪应庚,孙卫东,杨晓勇. 2013.皖南宁国竹溪岭地区花岗岩锆石U-Pb年代学及地球化学及其成因研究[J].地质学报,87(11):1662-1678.

    [5]

    程顺波,付建明,马丽艳,蒋桂新,陈希清,卢友月,童喜润.2013.桂东北越城岭—苗儿山地区印支期成矿作用:油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约[J].中国地质,40(4):1189-1201.

    [6]

    杜玉雕,刘家军,余心起,周 翔,杨赫鸣,杨隆勃,黄永海.2013.安徽逍遥钨多金属矿床成矿物质来源与成矿:碳、硫和铅同位素证据[J].中国地质,40(2):566-579.

    [7]

    丰成友,张德全,项新葵,李大新,瞿泓滢,刘建楠,肖 晔.2012.赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义[J].岩石学报,28(12),3858-3868.

    [8]

    广西壮族自治区三一〇核地质大队.2016.广西全州县李家矿区锡矿详查报告[R].

    [9]

    侯增谦,陈 骏,翟明国.2020.战略性关键矿产研究现状与科学前沿[J].科学通报,65(33):3651-3652.

    [10]

    湖南省地质矿产勘查开发局四〇七队.2016.湖南省绥宁县寨溪山矿区钨矿普查报告[R].

    [11]

    胡正华,楼法生,李永明,李吉明,王先广,陈建平,曾庆权,吴师金,聂龙敏,龚良信,文亮先,刘高峰,李 倩,余 希.2018.江西武宁县东坪钨矿床中与成矿有关的岩浆岩年代学、地球化学及岩石成因[J].地球科学,43(S1):243-263.

    [12]

    华仁民,张文兰,陈培荣,翟 伟,李光来.2013.初论华南加里东花岗岩与大规模成矿作用的关系[J].高校地质学报,19(1):1-11.

    [13]

    黄 迪.2021.赣西北花山洞钨矿矿床地质和成岩成矿年代学研究[D].南京大学硕士学位论文.

    [14]

    黄 迪,黄旭栋,章荣清,陆建军,吴劲薇,黄 玉.2022.赣西北花山洞与九岭花岗岩对比及其成矿指示意义[J].地质学刊,46(1):22-33.

    [15]

    黄 马,徐晓春,谢巧勤,韦导忠,徐生发,王德恩.2018.皖南宁国竹溪岭钨银矿床及相关岩体的同位素地质年龄[J].大地构造与成矿学,42(2):279-290.

    [16]

    江西省地质矿产勘查开发局九一六大队.2019.阳储岭钨矿资源储量核实报告[R].

    [17]

    孔志岗,梁 婷,毛景文,徐生发,许红兵,闫盼盼,金修勇.2018.皖南竹溪岭钨多金属矿床花岗闪长岩成因、成矿时代及成岩成矿背景研究[J].岩石学报,34(9):2632-2656.

    [18]

    李 斌,张赞赞,吴明安,周涛发,赵文广,蔡晓兵,狄勤松.2015.皖南宁国大坞尖钨钼矿床成岩成矿年龄——以花岗闪长斑岩锆石U-Pb和辉钼矿Re-Os年龄为依据[J].地质通报,34(Z1):569-578.

    [19]

    李 鹏,张立平,李建康,黄志飚,周芳春,姜鹏飞.2021.江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用[J].矿床地质,40(4):819-841.

    [20]

    李 洁,黄小龙.2013.江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J].岩石学报,29(12):4311-4322.

    [21]

    李晓峰,冯佐海,肖 荣,宋慈安,杨 锋,王翠云,康志强,毛 伟.2012.桂东北钨锡稀有金属矿床的成矿类型、成矿时代及其地质背景[J].地质学报,86(11):1713-1725.

    [22]

    李晓宇.2021.江南造山带中部桃江地区印支期花岗岩的成因与钨成矿作用[D].南京大学博士学位论文.

    [23]

    刘 珺,毛景文,叶会寿,谢桂青,杨国强,章 伟. 2008a.江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征[J].岩石学报,24(8):1813-1822.

    [24]

    刘 珺,叶会寿,谢桂青,杨国强,章 伟.2008b.江西省武功山地区浒坑钨矿床辉钼矿Re-Os年龄及其地质意义[J].地质学报,82(11):1572-1579.

    [25]

    刘进先,陈浩文,刘兴畅,王 高,李 超,张继高.2015.江西修水花山洞钨矿床同位素年代学研究及其意义[J].资源调查与环境,36(1):1-9.

    [26]

    楼法生,沈渭洲,王德滋,舒良树,吴富江,张芳荣,于津海.2005.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究[J].地质学报,79(5):636-644.

    [27]

    罗 兰,蒋少涌,杨水源,赵葵东,汪石林,高文亮.2010.江西彭山锡多金属矿集区隐伏花岗岩体的岩石地球化学、锆石U-Pb年代学和Hf同位素组成[J].岩石学报,26(9):2818-2834.

    [28]

    罗 鹏,陈 迪,杨 俊,凌跃新,罗 来.2021.湖南川口印支期花岗岩成因及与钨成矿关系[J].华南地质,37(3):247-264.

    [29]

    毛景文,吴胜华,宋世伟,戴 盼,谢桂青,苏蔷薇,刘 鹏,王先广,余忠珍,陈祥云,唐维新.2020.江南世界级钨矿带:地质特征、成矿规律和矿床模型[J].科学通报,65(33):3746-3762.

    [30]

    毛景文,袁顺达,谢桂青,宋世伟,周 琦,高永宝,刘 翔,付小方,曹 晶,曾载淋,李通国,樊锡银.2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J].矿床地质,38(5):935-969.

    [31]

    舒良树,施央申,郭令智,Charvet J,孙 岩.1995.江南中段板块-地体构造与碰撞造山运动学[M].南京:南京大学出版社.

    [32]

    苏康明,吕书君,孔令兵,杨富全,向君峰.2016.湖南崇阳坪地区石英脉型钨矿床的地质特征、成矿规律及成矿模式[J].矿床地质,35(5):902-912.

    [33]

    孙 涛.2006.新编华南花岗岩分布图及其说明[J].地质通报,25(3):332-335+426-427.

    [34]

    王德恩,周 翔,余心起,杜玉雕,杨赫鸣,傅建真,董会明.2011.皖南祁门地区东源钨钼矿区花岗闪长斑岩SHRIMP锆石U-Pb年龄和Hf同位素特征[J].地质通报,30(10):1514-1529.

    [35]

    王登红.2019.关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J].地质学报,93(6):1189-1209.

    [36]

    王孝磊,周金城,陈 昕,张凤凤,孙梓铭.2017.江南造山带的形成与演化[J].矿物岩石地球化学通报,36(5):714-735+696.

    [37]

    伍 静,梁华英,黄文婷,王春龙,孙卫东,孙亚莉,李 晶,莫济海,王秀璋.2012.桂东北苗儿山-越城岭南西部岩体和矿床同位素年龄及华南印支期成矿分析[J].科学通报,57(13):1126-1136.

    [38]

    项新葵,王 朋,孙德明,钟 波.2013.赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义[J].地质通报,32(11):1824-1831.

    [39]

    肖 鑫,周涛发,袁 峰,范 羽,张达玉,刘东周,黄伟平,陈雪锋.2017.安徽青阳高家塝钨钼矿床成岩成矿时代及其地质意义[J].岩石学报,33(3):859-872.

    [40]

    谢桂青,毛景文,张长青,李 伟,宋世伟,章荣清.2021.华南地区三叠纪矿床地质特征、成矿规律和矿床模型[J]. 地学前缘,28(3):252-270.

    [41]

    徐 斌,蒋少涌,罗 兰.2015.江西彭山锡多金属矿集区尖峰坡锡矿床LA-MC-ICP-MS锡石U-Pb测年及其地质意义[J].岩石学报,31(3):701-708.

    [42]

    薛 荣,王汝成,陈光弘,车旭东,谢 磊,诸泽颖. 2019.松树岗钽铌钨锡矿床石英脉的矿物学研究——云母和黑钨矿成分对热液成矿过程的制约[J].岩石矿物学杂志,38(4):507-520.

    [43]

    杨 振,王汝成,张文兰,储著银,陈 骏,朱金初,章荣清.2014.桂北牛塘界加里东期花岗岩及其矽卡岩型钨矿成矿作用研究[J].中国科学:地球科学,44(7):1357-1373.

    [44]

    杨 振,张文兰,王汝成,陆建军,谢 磊,车旭东.2013.桂北油麻岭钨矿区成矿岩体的年代学、地球化学及其地质意义[J].高校地质学报,19(1):159-172.

    [45]

    杨细浩,胡文洁,钟起泓,朱昌杰,万 欢,胡正华.2019.江西东坪石英脉型黑钨矿矿床地质特征、控矿因素及找矿标志[J].吉林大学学报(地球科学版),49(5):1301-1316.

    [46]

    杨泽黎,邱检生,邢光福,余明刚,赵姣龙.2014.江西宜春雅山花岗岩体的成因与演化及其对成矿的制约[J].地质学报,88(5):850-868.

    [47]

    翟明国,吴福元,胡瑞忠,蒋少涌,李文昌,王汝成,王登红,齐 涛,秦克章,温汉捷.2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.

    [48]

    张 迪,张文兰,王汝成,储著银,龚名文,蒋桂新.2015.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用[J].地质论评,61(4):817-834.

    [49]

    张 强. 2021.江南造山带西段苗儿山-越城岭复式岩体成因、岩浆演化与钨锡成矿作用[D].南京大学博士学位论文.

    [50]

    张 勇,潘家永,马东升,但小华,张雷雷,徐国辉,杨春鹏,江青霞,江超强.2017.赣西北大雾塘钨矿区地质特征及Re-Os同位素年代学研究[J].矿床地质,36(3):749-769.

    [51]

    张达玉,位鸥祥,陈雪锋,叶龙翔,丁 宁,吕启良.2017.江南古陆北缘青阳钨钼矿集区成岩成矿作用研究[J].岩石学报,33(11):3659-3674.

    [52]

    张龙升,彭建堂,胡阿香,林芳梅,张 婷.2014.湘西大溶溪钨矿床中辉钼矿Re-Os同位素定年及其地质意义[J].矿床地质,33(1):181-189.

    [53]

    张龙升,彭建堂,张东亮,胡阿香,阳杰华.2012.湘西大神山印支期花岗岩的岩石学和地球化学特征[J].大地构造与成矿学,36(1):137-148.

    [54]

    张世涛,马东升,陆建军,章荣清,蔡 杨,丁超超.2016.桂北平英花岗岩锆石U-Pb年代学、Hf同位素、地球化学特征及其地质意义[J].高校地质学报,22(1):92-104.

    [55]

    张志远,谢桂青,李 伟.2021.湘中矿集区杨家山石英脉白钨矿床的白云母40Ar-39Ar和LA-ICP-MS 锡石 U-Pb 年龄及其地质意义[J].岩石学报,37(3):794-804.

    [56]

    周 翔,余心起,王德恩,张德会,李春麟,傅建真,董会明.2011.皖南东源含W、Mo花岗闪长斑岩及成矿年代学研究[J].现代地质,25(2):201-210.

    [57]

    周涛发,聂利青,王世伟,汪方跃,张千明.2019.长江中下游成矿带钨矿床[J].岩石学报,35(12):3592-3608.

    [58]

    周维法.2020.苗儿山-越城岭地区新元古代-加里东期花岗岩及威溪钨矿成因研究[D]. 南京大学硕士学位论文.

    [59]

    Amelin Y. 2009. Sm-Nd and U-Pb systematics of single titanite grains[J]. Chemical Geology, 261: 53-61.

    [60]

    Boynton W V. 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 2: 63-114.

    [61]

    Carr P A, Mercadier J, Harlaux M, Romer R L, Moreira E, Legros H, Cuney M, Marignac C, Cauzid J, Salsi L, Lecomte A, Rouer O, Peiffert C. 2021. U/Pb geochronology of wolframite by LA-ICP-MS; mineralogical constraints, analytical procedures, data interpretation, and comparison with ID-TIMS[J]. Chemical Geology, 584: 120511.

    [62]

    Che X D, Wang R C, Wu F Y, Zhu Z Y, Zhang W L, Hu H, Xie L, Lu J J, Zhang D. 2019. Episodic Nb-Ta mineralisation in South China: Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 105:71-85.

    [63]

    Che X D, Wu F Y, Wang R C, Gerdes A, Ji W Q, Zhao Z H, Yang J H, Zhu Z Y. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS [J]. Ore Geology Reviews, 65: 979-989.

    [64]

    Chen B, Gu H O, Chen Y J, Sun K K, Chen W. 2018. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization[J]. Chemical Geology, 483: 372-384.

    [65]

    Chen J F, Sheng D, Shao Y J, Zhang J X, Liu Z F, Wei H T, Yang Q D, Luo X Y, Du Y. 2019. Silurian S-type granite-related W-(Mo) mineralization in the Nanling Range, South China: A case study of the Pingtan W-(Mo) deposit [J]. Ore Geology Reviews, 107: 186-200.

    [66]

    Chen L, Wang Z Q, Yan Z, Gong J H, Ma S X. 2018. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China [J]. Mineralogy and Petrology, 112( 4 ): 437-463.

    [67]

    Chen X L, Liang H Y, Richards J P, Huang W T, Zhang J, Wu J, Sotiriou P. 2018. Age and granite association of skarn W mineralization at Niutangjie district, South China Block [J]. Ore Geology Reviews, 102: 268-283.

    [68]

    Dai P, Mao J W, Wu S H, Xie G Q, Luo X H. 2018. Multiple dating and tectonic setting of the Early Cretaceous Xianglushan W deposit, Jiangxi Province, South China [J]. Ore Geology Reviews, 95: 1161-1178.

    [69]

    Deng X D, Li J W, Luo T, Wang H Q. 2017. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry [J]. Contributions to Mineralogy and Petrology, 172(9): 1-11.

    [70]

    Gulley A L, Nassar N T, Xun S. 2018. China, the United States, and competition for resources that enable emerging technologies [J]. Proceedings of National Academy of Sciences, 115(16): 4111-4115.

    [71]

    Gulson B L, Jones M T. 1992. Cassiterite - Potential for direct dating of mineral-deposits and a precise Age for the Bushveld Complex granites [J]. Geology, 20(4):355-358.

    [72]

    Harlaux M, Romer R L, Mercadier J, Morlot C, Marignac C, Cuney M. 2018a. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite [J]. Mineralium Deposita, 53(1): 21-51.

    [73]

    Harlaux M, Mercadier J, Marignac C, Peiffert C, Cloquet C, Cuney M. 2018b. Tracing metal sources in peribatholitic hydrothermal W deposits based on the chemical composition of wolframite: The example of the Variscan French Massif Central [J]. Chemical Geology, 479: 58-85.

    [74]

    Huang L C, Jiang S Y. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization [J]. Lithos, 202: 207-226.

    [75]

    Huang X D, Lu J J, Zhang R Q, Sizaret S, Ma D S, Wang R C, Zhu X, He Z Y. 2022. Garnet and scheelite chemistry of the Weijia tungsten deposit, South China: Implications for fluid evolution and W skarn mineralization in F-rich ore system [J]. Ore Geology Reviews, 142: 104729.

    [76]

    Li C Y, Zhang R Q, Ding X, Ling M X, Fan W M, Sun W D. 2016. Dating cassiterite using laser ablation ICP-MS [J]. Ore Geology Reviews, 72: 313-322.

    [77]

    Li D F, Fu Y, Hollings P, Mitchell R, Zurevinski S, Kamo S, Zhang R Q, Zhang Y, Liu Q F, Liao J L, Liang Y J, Sun X M. 2022. PL57 garnet as a new natural reference material for in situ U-Pb isotope analysis and its perspective for geological applications [J]. Contributions to Mineralogy and Petrology, 177(2): 1-18.

    [78]

    Li J D, Li X F, Xiao R. 2020. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the Jiepai W-Cu deposit, South China: Implications for W mineralization [J]. Canadian Mineralogist, 58(1): 45-69.

    [79]

    Li P, Li J K, Liu X, Li C, Huang Z B, Zhou F C. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China [J]. Ore Geology Reviews, 116: 103237.

    [80]

    Li X F, Yi X K, Huang C, Wang C Z, Wei X L, Zhu Y T, Xu J. 2018. Zircon U-Pb, molybdenite Re-Os and muscovite Ar-Ar geochronology of the Yashan W-Mo and Xiatongling W-Mo-Be deposits: Insights for the duration and cooling history of magmatism and mineralization in the Wugongshan district, Jiangxi, South China [J]. Ore Geology Reviews, 102: 1-17.

    [81]

    Li X Y, Gao J F, Zhang R Q, Lu J J, Chen W H, Wu J W. 2018. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite [J]. Ore Geology Reviews, 99: 180-194.

    [82]

    Li X Y, Lu J J, Zhang R Q, Gao J F, Wu J W. 2021. Magma evolution leading to veinlet-disseminated tungsten mineralization at the Muguayuan deposit: In-situ analysis of igneous minerals [J]. Ore Geology Reviews, 138: 104406.

    [83]

    Linnen R L, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization [A].//In: Linnen RL and Samson IM, eds., rare-element geochemistry and mineral deposits [C]. Geological Association of Canada, GAC, Short Course.

    [84]

    Lv Z H, Chen J, Zhang H, Tang Y. 2021. Petrogenesis of Neoproterozoic rare metal granite-pegmatite suite in Jiangnan Orogen and its implications for rare metal mineralization of peraluminous rock in South China [J]. Ore Geology Reviews, 128: 103923.

    [85]

    Mao J W, Ouyang H G, Song S W, Santosh M, Yuan S D, Zhou Z H, Zheng W, Liu H, Liu P, Cheng Y, Chen M H. 2019. Geology and metallogeny of tungsten and tin deposits in China [J]. Society of Economic Geologists Special Publication, 22: 411-482.

    [86]

    Mao J W, Xiong B K, Liu J, Pirajno F, Cheng Y B, Ye H S, Song S W, Dai P. 2017. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting [J]. Lithos, 286:35-52.

    [87]

    Mao Z H, Cheng Y B, Liu J J, Yuan S D, Wu S H, Xiang X K, Luo X H. 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China [J]. Ore Geology Reviews, 53: 422-433.

    [88]

    Mao Z H, Liu J J, Mao J W, Deng J, Zhang F, Meng X Y, Xiong B K, Xiang X K, Luo X H. 2015. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization [J]. Gondwana Research, 28(2): 816-836.

    [89]

    Meng X, Zhang D Y, Ren K D, Zhang F, Zhou T F, Zhang R Q, Yu Z D, Noel W C. 2022. Geochronology and geochemical characteristics of ore-forming granite in Maopengdian tin deposit, northern Jiangxi Province [J]. Ore Geology Reviews, under review.

    [90]

    Maniar P A, Piccoli P M. 1989. Tectonic discrimination of granitoids [J]. Geological Society of American Bulletin, 101: 635-643.

    [91]

    Pan X F, Hou Z Q, Li Y, Chen G H, Zhao M, Zhang T F, Zhang C, Wei J, Kang C. 2017. Dating the giant Zhuxi W-Cu deposit (Taqian-Fuchun Ore Belt) in South China using molybdenite Re-Os and muscovite Ar-Ar system [J]. Ore Geology Reviews, 86: 719-733.

    [92]

    Pan X F, Hou Z Q, Zhao M, Chen G H, Rao J F, Li Y, Wei J, Ouyang Y P. 2018. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization [J]. Lithos, 304: 155-179.

    [93]

    Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 22: 247-263.

    [94]

    Romer R L, Luders V. 2006. Direct dating of hydrothermal W mineralization: U-Pb age for hubnerite (MnWO4), Sweet Home Mine, Colorado [J]. Geochimica et Cosmochimica Acta, 70(18): 4725-4733.

    [95]

    Romer R L, Wright J E. 1992. U-Pb dating of columbites:A geochronological tool to date magmatism and ore deposits [J]. Geochimica et Cosmochimica Acta, 56(5): 2137-2142.

    [96]

    Seman S, Stockli D F, McLean N M. 2017. U-Pb geochronology of grossular-andradite garnet [J]. Chemical Geology, 460: 106-116.

    [97]

    Smith S R, Foster G L, Romer R L, Tindle A G, Kelley S P, Noble S R, Horstwood M, Breaks F W. 2004. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS [J]. Contribtion to Mineralogy and Petrology, 147(5): 549-564.

    [98]

    Song G X, Qin K Z, Li G M, Li X H, Qu W J. 2013. Geochronology and Ore-Forming Fluids of the Baizhangyan W-Mo Deposit in the Chizhou Area, Middle-Lower Yangtze Valley, SE-China [J]. Resource Geology, 63(1): 57-71.

    [99]

    Song G X, Qin K Z, Li G M, Liu T B, Li J X, Li X H, Chang Z S. 2012. Geochronologic and isotope geochemical constraints on magmatism and associated W-Mo mineralization of the Jitoushan W-Mo deposit, middle-lower Yangtze Valley [J]. International Geology Review, 54(13): 1532-1547.

    [100]

    Song S W, Mao J W, Xie G Q, Chen L, Santosh M, Chen G H, Rao J F, Ouyang Y P. 2019. In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China [J]. Mineralium Deposita, 54(4): 569-590.

    [101]

    Song S W, Mao J W, Xie G Q, Yao Z Y, Chen G H, Rao J F, Ouyang Y P. 2018a. The formation of the world-class Zhuxi scheelite skarn deposit: Implications from the petrogenesis of scheelite-bearing anorthosite [J]. Lithos, 312: 153-170.

    [102]

    Song S W, Mao J W, Zhu Y F, Yao Z Y, Chen G H, Rao J F, Ouyang Y P. 2018b. Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, south China: A case study at the giant Zhuxi W-Cu skarn deposit [J]. Lithos, 304-307: 180-199.

    [103]

    Song W L, Yao J M, Chen H Y, Sun W D, Ding J Y, Xiang X K, Zuo Q S, Lai C K. 2018. Mineral paragenesis, fluid inclusions, H-O isotopes and ore-forming processes of the giant Dahutang W-Cu-Mo deposit, South China [J]. Ore Geology Reviews, 99: 116-150.

    [104]

    Su Q W, Mao J W, Wu S H, Zhang Z C, Xu S F. 2018. Geochronology and geochemistry of the granitoids and ore - forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization [J]. Lithos, 296(1): 365-381.

    [105]

    Sun J F, Yang J H, Wu F Y, Xie L W, Yang Y H, Liu Z C, Li X H. 2012. In situ U-Pb dating of titanite by LA-ICPMS [J]. Chinese Science Bulletin, 57(20): 2506-2516.

    [106]

    Sun K K, Chen B, Deng J. 2019. Biotite in highly evolved granites from the Shimensi W-Cu-Mo polymetallic ore deposit, China: Insights into magma source and evolution [J]. Lithos, 350: 105245.

    [107]

    Sun K K, Chen B. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China [J]. American Mineralogist, 102(5): 1114-1128.

    [108]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 42(1): 313-345.

    [109]

    Tang Y W, Han J J, Lan T G, Gao J F, Liu L, Xiao C H, Yang J H. 2022. Two reliable calibration methods for accurate in situ U-Pb dating of scheelite [J]. Journal of Analytical Atomic Spectrometry, 37: 358-368.

    [110]

    Tian E N, Xie L, Wang R C, Duan X H, Huang F F, Che X D, Chen X M, Wang L J. 2021. Mineralogical constraints on Nb-Ta fractionation in Early Cretaceous A-type granites from the Suzhou pluton, SE China [J]. Lithos, 402-403: 106286.

    [111]

    Tian E N, Wang R C, Xie L, Zhang W L, Che X D, Zhang R Q. 2020. Mineralogy and geochemistry of the newly discovered Late Mesozoic granite-pegmatite and associated Sn-Nb-Ta-Be mineralization in the Miao'ershan-Yuechengling composite batholith, northern Guangxi, South China [J]. Journal of Asian Earth Sciences, 190:104149.

    [112]

    Wang D, Wang X L, Cai Y, Chen X, Zhang F R, Zhang F F. 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: a Magma Chamber Growth Model in Deep Crustal Hot Zones [J]. Journal of Petrology, 58(9): 1781-1810.

    [113]

    Wang L X, Ma C Q, Zhang C, Zhang J Y, Marks M A W. 2014. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China [J]. Lithos, 206-207: 147-163.

    [114]

    Wang X L, Zhou J C, Griffin W L, Zhao G C, Yu J H, Qiu J S, Zhang Y J, Xing G F. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China [J]. Precambrian Research, 242: 154-171.

    [115]

    Wang Y Y, Van den Kerkhof A, Xiao Y L, Sun H, Yang X Y, Lai J Q, Wang Y G. 2017. Geochemistry and fluid inclusions of scheelite-mineralized granodiorite porphyries from southern Anhui Province, China [J]. Ore Geology Reviews, 89: 988-1005.

    [116]

    Wei S D, Liu H, Zhao J H. 2018. Tectonic evolution of the western Jiangnan Orogen: Constraints from the Neoproterozoic igneous rocks in the Fanjingshan region, South China [J]. Precambrian Research, 318: 89-102.

    [117]

    Wintzer N E, Schmitz M D, Gillerman V S, Vervoort J D. 2022. U-Pb scheelite ages of tungsten and antimony mineralization in the Stibnite-Yellow Pine district, Central Idaho [J]. Economic Geology, doi: https://doi.org/10.5382/econgeo.4953

    [118]

    Wu J W, Lai J Q, Li B, Lu A H, Rocholl A, Dick J M, Peng J T, Wang K L. 2020. Tungsten mineralization during slab subduction: a case study from the Huxingshan deposit in northeastern Hunan Province, South China [J]. Ore Geology Reviews, 124:103657.

    [119]

    Xiang L, Wang R C, Erdmann S, Sizaret S, Lu J J, Zhang W L, Xie L, Che X D, Zhang R Q. 2018. Neoproterozoic mineralization in a hydrothermal cassiterite-sulfide deposit at Jiumao, northern Guangxi, South China: Mineral-scale constraints on metal origins and ore-forming processes [J]. Ore Geology Reviews, 94: 172-192.

    [120]

    Xiang L, Wang R C, Romer R L, Che X D, Hu H, Xie L, Tian E N. 2020. Neoproterozoic Nb-Ta-W-Sn bearing tourmaline leucogranite in the western part of Jiangnan Orogen: Implications for episodic mineralization in South China [J]. Lithos, 360-361:105450.

    [121]

    Xiang Y X, Yang J H, Chen J Y, Zhang Y. 2017. Petrogenesis of Lingshan highly fractionated granites in the Southeast China: Implication for Nb-Ta mineralization [J]. Ore Geology Reviews, 89: 495-525.

    [122]

    Xie G Q, Mao J W, Bagas L, Fu B, Zhang Z Y. 2019b. Mineralogy and titanite geochronology of the Caojiaba W deposit, Xiangzhong metallogenic province, southern China: implications for a distal reduced skarn W formation [J]. Mineralium Deposita, 54(3): 459-472.

    [123]

    Xie G Q, Mao J W, Li W, Fu B, Zhang Z Y. 2019a. Granite-related Yangjiashan tungsten deposit, southern China [J]. Mineralium Deposita, 54(1): 67-80.

    [124]

    Xie L, Liu Y, Wang R C, Hu H, Che X D, Xiang L. 2019. Li-Nb-Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith, south China: A fluid-rich and quenching ore-forming process [J]. Journal of Asian Earth Sciences, 185: 104047.

    [125]

    Xu B, Jiang S Y, Luo L, Zhao K D, Ma L. 2017. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes [J]. Mineralium Deposita, 52(3): 337-360.

    [126]

    Yang M, Romer R L, Yang Y H, Wu S T, Wang H, Tu J R, Zhou H Y, Xie L W, Huang C, Xu L, Yang J H, Wu F Y. 2022. U-Pb isotopic dating of cassiterite: Development of reference materials and in situ applications by LA-SF-ICP-MS [J]. Chemical Geology, 593: 120754.

    [127]

    Yang M, Yang Y H, Wu S T, Romer R L, Che X D, Zhao Z F, Li W S. Yang J H, Wu F Y, Xie L W, Huang C, Zhang D, Zhang Y. 2020. Accurate and precise in situ U-Pb isotope dating of wolframite series minerals via LA-SF-ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 35(10): 2191-2203.

    [128]

    Yang S W, Lou F S, Xu C, Feng C Y, Cao S H, Xu D R, Tang Y W. 2022. Two significant quartz-wolframite-veining mineralization events in the Jiangnan Orogen, South China: Constraints from in-situ U-Pb dating of wolframite in the Dongping and Dahutang W-(Cu-Mo) deposits [J]. Ore Geology Reviews, 141: 104598.

    [129]

    Yang Y S, Pan X F, Hou Z Q, Deng Y. 2021. Redox states and protoliths of Late Mesozoic granitoids in the eastern Jiangnan Orogen: Implications for W, Mo, Cu, Sn, and (Au) mineralization [J]. Ore Geology Reviews, 134: 104038.

    [130]

    Yin L, Pollard P J, Hu S X, Taylor R G. 1995. Geologic and Geochemical Characteristics of the Yichun Ta-Nb-Li Deposit, Jiangxi Province, South China [J]. Economic Geology, 90(3): 577-585.

    [131]

    Yin R, Han L, Huang X L, Li J, Li W X, Chen L L. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China [J]. American Mineralogist, 104(7): 949-965.

    [132]

    Yuan S D, Peng J T, Hao S, Li H M, Geng J Z, Zhang D L. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization [J]. Ore Geology Reviews, 43(1): 235-242.

    [133]

    Zhang Q, Zhang R Q, Gao J F, Lu J J, Wu J W. 2018. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China [J]. Ore Geology Reviews, 99: 166-179.

    [134]

    Zhang R Q, Lehmann B, Seltmann R, Sun W D. Li C Y. 2017a. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia) [J]. Geology, 45(12): 1095-1098.

    [135]

    Zhang R Q, Lu J J, Lehmann B, Li C Y, Li G L, Zhang L P, Guo J, Sun W D. 2017b. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China [J]. Ore Geology Reviews, 82: 268-284.

    [136]

    Zhang S T, Zhang R Q, Lu J J, Ma D S, Ding T, Gao S Y, Zhang Q. 2019. Neoproterozoic tin mineralization in South China: geology and cassiterite U-Pb age of the Baotan tin deposit in northern Guangxi [J]. Mineralium Deposita, 54(8): 1125-1142.

    [137]

    Zhu Z Y, Wang R C, Che X D, Zhu J C, Wei X L, Huang X E. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals [J]. Ore Geology Reviews, 65: 749-760.

    [138]

    Zhu Z Y, Wang R C, Marignac C, Cuney M, Mercadier J, Che X D, Charles N, Lespinasse M. 2019. Petrogenesis of Nb-(Ta) aplo-pegmatites and fine-grained granites from the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China [J]. Lithos, 346-347: 105150.

    [139]

    Zhu Z Y, Wang R C, Marignac C, Cuney M, Mercadier J, Che X D, Lespinasse M Y. 2018. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China [J]. American Mineralogist, 103(10): 1530-1544.

  • 加载中
计量
  • 文章访问数:  1261
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2022-06-13
修回日期:  2022-07-18

目录