基于EfficientNet的滑坡遥感图像识别方法——以贵州省毕节市为例

李长冬, 龙晶晶, 刘勇, 易书帆, 冯鹏飞. 2023. 基于EfficientNet的滑坡遥感图像识别方法——以贵州省毕节市为例. 华南地质, 39(3): 403-412. doi: 10.3969/j.issn.2097-0013.2023.03.001
引用本文: 李长冬, 龙晶晶, 刘勇, 易书帆, 冯鹏飞. 2023. 基于EfficientNet的滑坡遥感图像识别方法——以贵州省毕节市为例. 华南地质, 39(3): 403-412. doi: 10.3969/j.issn.2097-0013.2023.03.001
LI Chang-Dong, LONG Jing-Jing, LIU Yong, YI Shu-Fan, FENG Peng-Fei. 2023. Landslide Remote Sensing Image Recognition Based on EfficientNet: Taking Bijie City, Guizhou Province as an Example. South China Geology, 39(3): 403-412. doi: 10.3969/j.issn.2097-0013.2023.03.001
Citation: LI Chang-Dong, LONG Jing-Jing, LIU Yong, YI Shu-Fan, FENG Peng-Fei. 2023. Landslide Remote Sensing Image Recognition Based on EfficientNet: Taking Bijie City, Guizhou Province as an Example. South China Geology, 39(3): 403-412. doi: 10.3969/j.issn.2097-0013.2023.03.001

基于EfficientNet的滑坡遥感图像识别方法——以贵州省毕节市为例

  • 基金项目:

    国家自然科学基金重大项目(42090054)、湖北省创新群体项目(2022CFA002)

详细信息
    作者简介: 李长冬(1981—),男,教授,博士生导师,从事地质灾害演化机理与防治研究,E-mail:lichangdong@cug.edu.cn
    通讯作者: 刘勇(1979—),男,副教授,博士生导师,主要从事滑坡数据智能化处理研究,E-mail:yongliu@cug.edu.cn
  • 中图分类号: P642.22

Landslide Remote Sensing Image Recognition Based on EfficientNet: Taking Bijie City, Guizhou Province as an Example

More Information
    Corresponding author: LIU Yong
  • 近年来,随着工程建设的快速发展,工程活动改变了边坡原始地质条件,导致滑坡灾害频繁发生,严重威胁人民的生命财产安全。因此,深入研究滑坡的快速、精确识别方法对于防灾减灾具有重要意义。本文提出一种基于EfficientNet 高效网络提取滑坡深度特征的潜在滑坡识别方法,该方法通过寻找一组最优的复合系数从深度、宽度、分辨率三个维度对神经网络进行扩展,自适应地优化网络结构,并引入带动量的梯度下降算法(Stochastic Gradient Descent Momentum,SGDM)作为网络学习的优化器,充分考虑历史梯度的影响,在参数更新过程中不断调整当前梯度值,从而相应地调整参数的更新幅度,改善神经网络的学习效果,提取滑坡体的深层次特征。实验结果表明,EfficientNet 模型在测试集上的平均准确度达到92.78%,可以高效准确地实时提取滑坡信息,对灾后的快速反应有指导意义。
  • 加载中
  • [1]

    陈聪,候磊,李乐乐,杨鑫涛.2021.基于GRU改进RNN神经网络的飞机燃油流量预测[J].科学技术与工程,21(27):11663-11673.

    [2]

    陈冠宇,李向,王岭玲.2016a.基于大数据的遥感图像植被识别方法[J].地质科技情报,35(3):204-209.

    [3]

    陈冠宇,安凯,李向.2016b.基于卷积神经网络的不良地质体识别与分类[J].地质科技情报,35(1):205-211.

    [4]

    陈慧娟,邹浩,訚遥,王超.2023.持续强降雨影响下黄梅县袁山村三组滑坡破坏特征与成因分析[J].华南地质,39(3):482-491.

    [5]

    姜英, 王延江, 林青, 刘伟锋.2017. 基于卷积神经网络与Bayesian 决策的图像识别与分类记忆建模[J].中国科学:技术科学,47(9):977-984.

    [6]

    康牧,凌凤彩.2013.一种基于新插值方法的图像旋转算法[J].计算机科学,40(5):303-306.

    [7]

    刘沛,况顺达,姚智.2004.RS、GIS 在贵州省环境地质综合调查中的应用——以崩塌、滑坡、泥石流调查为例[J].贵州地质,21(3):161-164+160.

    [8]

    李剑萍.2004.3S技术在灾害监测预测中的应用及展望[J].灾害学,19(S1):85-89.

    [9]

    卢薇艳,罗鹏,龚淑云.2019.基于遥感技术的海岸线提取及应用研究综述[J].华南地质与矿产,35(3):393-397.

    [10]

    李长冬,龙晶晶,姜茜慧,付智勇.2020.水库滑坡成因机制研究进展与展望[J].地质科技通报,39(1):67-77.

    [11]

    李长冬,谭钦文.2022.动水驱动型滑坡物理启滑能够预测吗?[J].地球科学,47(10):3908-3910.

    [12]

    李长冬,孟杰,项林语,黄徳崴,崔宇寒.2022.白鹤滩库首区砂岩结构多尺度演变机制研究[J/OL].地球科学:1-10.

    [13]

    李益敏,袁静,蒋德明,王东驰,刘心知.2021.基于GIS 的高山峡谷区滑坡灾害危险性评价——以泸水市为例[J].水土保持研究,28(3):355-363.

    [14]

    马玉林,吴华,张文海.2022.遥感技术在滑坡识别中的应用探讨[J].科技创新与应用,12(3):142-145.

    [15]

    邱芹军,吴亮,马凯,谢忠,陶留锋.2023.面向灾害应急响应的地质灾害链知识图谱构建方法[J].地球科学,48(5):1875-1891.

    [16]

    唐辉明,李长冬,龚文平,邹宗兴,张永权,张抒,张俊荣.2022.滑坡演化的基本属性与研究途径[J].地球科学,47(12):4596-4608.

    [17]

    唐辉明.2022.重大滑坡预测预报研究进展与展望[J].地质科技通报,41(6):1-13.

    [18]

    徐宏根,李春来,杨淼,董小环.2019.光谱保真归一化卷积高光谱超分辨率重建方法[J]. 华南地质与矿产,35(4):504-513.

    [19]

    杨春雨,张鑫.2022.煤矿机器人环境感知与路径规划关键技术[J].煤炭学报,47(7):2844-2872.

    [20]

    殷宗敏,赵宝强,叶润青.2022.时序InSAR技术在三峡库首区潜在滑坡识别中的应用研究[J]. 华南地质,38(2):273-280.

    [21]

    周乐群,杨岚.2000.基于“3S”技术的国土资源与生态环境动态监测[J].华南地质与矿产,16(4):40-46.

    [22]

    周前祥,敬忠良,姜世忠.2004.遥感影像双线性插值小波融合方法[J].上海交通大学学报,38(4):547-550.

    [23]

    张勤,黄观文,杨成生.2017.地质灾害监测预警中的精密空间对地观测技术[J].测绘学报,46(10):1300-1307.

    [24]

    张勤,赵超英,陈雪蓉.2022.多源遥感地质灾害早期识别技术进展与发展趋势[J].测绘学报,51(6):885-896.

    [25]

    张芳,赵东旭,肖志涛,耿磊,吴骏,刘彦北.2022.单幅图像超分辨率重建技术研究进展[J]. 自动化学报,48(11):2634-2654.

    [26]

    张占忠,陈富强,刘亚林,李丹,杜世回,张晓宇.2023.基于遥感技术的嘉黎江巴变形体稳定性评价与分析[J].地质科技通报,42(3):28-37.

    [27]

    Baatz M. 1999. Object-oriented and multi-scale image analysis in semantic networks[C].Proc the International Symposium on Operationali-zation of Remote Sensing.

    [28]

    Behling R, Roessner S, Kaufmann H, Kleinschmit B. 2014. Automated Spatiotemporal Landslide Mapping over Large Areas Using RapidEye Time Series Data[J]. Remote Sensing, 6(9): 8026-8055.

    [29]

    Blesius L J. 2002. A satellite based methodology for landslide susceptibility map-ping incorporating geotechnical slope stability parameters. [D]. The University of Iowa.

    [30]

    Chen L, Lin W B, Chen P, Jiang S, Liu L, Hu H Y. 2021. Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin[J]. Journal of Earth Science, 32(4): 828-838.

    [31]

    Criss R E, Yao W M, Li C D, Tang H M. 2020. A Predictive, Two-Parameter Model for the Movement of Reservoir Landslides[J]. Journal of Earth Science, 31(6): 1051-1057.

    [32]

    Ji S P, Yu D W, Shen C Y, Li W L, Xu Q. 2020. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 17: 1337-1352.

    [33]

    Krizhevsky A, Sutskever I, Hinton G E. 2017. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 60(6), 84-90.

    [34]

    Li S, Chen J P, Liu C, Wang Y. 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data[J]. Journal of Earth Science, 32(2): 327-347.

    [35]

    Long Y J, Li W L, Huang R Q, Xu Q, Yu B, Liu G. 2023. A Comparative Study of Supervised Classification Methods for Investigating Landslide Evolution in the Mianyuan River Basin, China[J]. Journal of Earth Science, 34(2): 316-329.

    [36]

    Mantovani F, Soeters R, Westen C. 1996. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology, 15(3): 213-225.

    [37]

    Mezaal M R, Pradhan B. 2018. An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data[J]. Catena, 167: 147-159.

    [38]

    Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S, Tagliavini F. 2007. Using GB-SAR technique to monitor slow moving landslide[J]. Engineering Geology, 95(3): 88-98.

    [39]

    Roessner S, Wetzel H U, Kaufmann H, Sarnagoev A. 2005. Potential of Satellite Remote Sensing and GIS for Landslide Hazard Assessment in Southern Kyrgyzstan (Central Asia) [J]. Natural Hazards, 35(3): 395-416.

    [40]

    Schulz W H.2007.Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington[J]. Engineering Geology, 89(1-2): 67-87.

    [41]

    Schuster R L, Krizek R. 1979. Landslides: Analysis and control[J]. Transportation Research Board Special Report.

    [42]

    Stephens P R, Trotter C M, De Rose R C, Newsome P F, Carr K S. 1988. Use of satellite data to map landslides[C]. 9th Asian Conference on Remote Sensing, Bangkok, Thailand, J11.1-J11.7.

    [43]

    Su A J, Feng M Q, Dong S, Zou Z X, Wang J G. 2022. Improved Statically Solvable Slice Method for Slope Stability Analysis[J]. Journal of Earth Science, 33(5): 1190-1203.

    [44]

    Tan M X, Le Q V. 2019. EfficientNet: Re-thinking Model Scaling for Convolutional Neural Networks[C]. 36th International Conference on Machine Learning (ICML).

    [45]

    Zhong C, Li H, Xiang W, Su A J, Huang X F. 2012. Comprehensive Study of Landslides through the Integration of Multi Remote Sensing Techniques: Framework and Latest Advances[J]. Journal of Earth Science, 23(2): 243-252.

  • 加载中
计量
  • 文章访问数:  408
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2023-06-01
修回日期:  2023-07-17

目录