Instability Mechanism and Debris Flow Dynamics of Fenghuang Mountain Dangerous Rock Mass in Wuxi, Three Gorges Reservoir Area
-
摘要: 三峡库区巫溪县凤凰山发育有较多呈带状分布危岩体,严重威胁到沿线居民的生命财产安全。本文通过野外地质调查、遥感影像分析和数值模拟分析等方法,总结了凤凰山危岩体的崩塌失稳机理,利用动力学软件DAN-W模拟了危岩体崩塌碎屑流运动全过程,并探讨了群塌效应下碎屑流动力特征和碎屑流运动对建筑物的影响。结果表明:危岩体崩塌碎屑流动力学过程主要分为崩塌启动-碎屑流通-碎屑堆积三个阶段,危岩体BW61和BW68崩塌所产生碎屑流的最大速度分别为22.14 m/s和18.12 m/s,运动距离分别为171 m和182 m,平均厚度分别为1.57 m和1.20 m。两处危岩体发生群崩并转化为碎屑流所产生冲击压强高达132.22kPa,下方道路和居民建筑有被完全摧毁的风险。相关研究可为三峡库区危岩体风险评价和科学防控提供一定的理论依据。Abstract: A large number of dangerous rock bodies distributes in Fenghuang Mountain, Wuxi County, Three Gorges Reservoir area, in the form of bands which seriously threaten the life and property safety of the residents along the route. This paper summarizes the collapse destabilization mechanism of the dangerous rock bodies in Fenghuang Mountain through field geological survey, remote sensing image analysis and numerical simulation analysis, simulates the whole process of the collapse debris flow movement of the dangerous rock bodies by using the dynamics software DAN-W, and discusses the dynamic characteristics of debris flow and the influence of debris flow movement on buildings under the effect of group collapse. The results show that the collapse debris flow dynamics of the dangerous rock bodies are mainly divided into three stages: collapse initiation, debris flow, and debris accumulation, and the maximum velocity of the debris flow generated by the cluster collapse of BW61 and BW68 is 22.14 m/s and 18.12 m/s, the distance of the movement is 171 m and 182 m, and the average thickness is 1.57 m and 1.20 m. If the two dangerous rock bodies collapse and transform into debris flows, the impact could reach as high as 132.22 kPa, and the roads and residential buildings below are at risk of being completely destroyed. This study could provide some theoretical basis for the risk evaluation and scientific prevention and control of dangerous rock bodies in the Three Gorges reservoir area.
-
Key words:
- dangerous rock collapse /
- failure mechanism /
- debris flow /
- DAN-W /
- dynamic characteristics
-
-
[1] 贺凯,殷跃平,冯振,李滨.2015.重庆南川甑子岩-二垭岩危岩带特征及其稳定性分析[J].中国地质灾害与防治学报,26(1):16-22.
[2] 孔祥曌, 李滨, 贺凯, 罗浩,常文斌,邢爱国. 2022.柱状岩体崩塌动力特征与破碎规律−以重庆甑子岩崩塌为例[J].中国地质灾害与防治学报, 33(5): 1-10.
[3] 彭双麒,柯灵,郑体,徐继忠.2021.基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J].地质科技通报,40(6):226-235.
[4] 铁永波,葛华,高延超.2022.二十世纪以来西南地区地质灾害研究历程与展望[J]. 沉积与特提斯地质,42(4):653-665.
[5] 王磊,李滨冯振,高杨,朱赛楠.2015.武隆县羊角场镇厚层灰岩山体大型危岩体破坏模式及成因机制研究[J].地质学报,89(2):461-471.
[6] 杨龙伟,魏云杰,彭令,王文沛,朱赛楠,王俊豪.2020.新疆维吾尔自治区乌恰县康苏红层崩塌运动学特征研究[J].工程地质学报,28(3):520-529.
[7] 杨龙伟,徐杨青,高敬轩,江强强,闫国强,张楠.2023.高位滑坡成灾地质环境研究进展[J]. 水利水电技术, 54(S1):333-340.
[8] 殷跃平.2010.斜倾厚层山体滑坡视向滑动机制研究—以重庆武隆鸡尾山滑坡为例.[J].岩石力学与工程学报,29(2):217-226.
[9] 袁锦涛,韩培锋,田述军,欧小红,邱洪志.2022.滑坡碎屑流颗粒级配及地形偏转对其冲击和堆积过程的影响研究[J].铁道科学与工程学报,19(5):1319-1330.
[10] 张永海,谢武平,罗忠行.2022.四川名山白马沟危岩体稳定性评价与落石轨迹分析[J].中国地质灾害与防治学报,33(4):37-46.
[11] 中国地质灾害防治工程行业协会.2018. T/CAGHP 006—2018 泥石流灾害防治工程勘查规范[S].北京:中国标准出版社.
[12] 朱晨光,刘春,许强,胡伟,张晓宇.2019.滑坡滑带摩擦热离散元数值模拟研究[J].工程地质学报,27(3):651-658.
[13] Gao Y, Li B, Gao H Y, Chen L C, Wang Y F. 2020.Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng“7.23”landslide in Guizhou, China [J]. Landslides, 17:1663-1677.
[14] Hu K H, Cui P, Ge Y G. 2010. Building destructive patterns by august 8, 2010 debris flow in Zhouqu, Western China [J]. Journal of Mountain Science, 30(4): 484-490.
[15] Hungr O. 2000. Analysis of debris flow surges using the theory of uniformly progressive flow [J]. Earth Surface Processes & Landforms, 25(5): 483-495.
[16] Hungr O, Evans S G, 2004. The occurrence and classification of massive rock slope failure [J]. Felsbau, 22(2): 16-23.
[17] Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides, 11(2): 167-194.
[18] Hungr O, McDougall S. 2009. Two numerical models for landslide dynamic analysis[J]. Computers and Geosciences, 35: 978-992.
[19] Hungr O. 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches [J]. Canadian Geotechnical Journal, 32(4): 610-623.
[20] Mu C M, Lao Z P, Liu B C,Liu Z K. 2011. Study on the formation mechanism of the lime perilous rock in Guilin areas[A].//International Conference on Remote Sensing, Environment and Transportation Engineering, 6373-6377.
[21] Santo A, Del Prete S, Di Crescenzo G, Rotella M. 2007. Karst processes and slope instability: Some investigations in the carbonate Apennine of Campania (southern Italy) [J]. Geological Society, London, Special Publications, 279(1): 59-72.
[22] Sosio R, Crosta G B, Hungr O. 2008. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps) [J]. Engineering Geology, 100(1-2): 11-26.
[23] Walter F, Amann F, Kos A, Kenner R, Phillips M, Preux A, Huss M , Tognacca C, Clinton J, Diehl T, Bonanomi Y. 2020.Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows [J]. Geomorphology, 351, 106933.
[24] Wang F W, Sassa K. 2000. A modified geotechnical simulation model for the areal prediction of landslide motion [J]. Kyoto Daigaku Bōsai Kenkyūjo Nenpō, 43: 129-139.
[25] Wang L Q, Yin Y P, Huang B L, Dai Z W. 2020. Damage evolution and stability analysis of the Jianchuandong Dangerous Rock Mass in the Three Gorges Reservoir Area [J]. Engineering Geology, 265, 105439.
[26] Zanchetta G, Sulpizio R, Pareschi M T, Leoni F M, Santacroce R. 2004. Characteristics of May 5-6,1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation[J]. Journal of Volcanology and Geothermal Research, 133(1-4): 377-393.
-
计量
- 文章访问数: 909
- PDF下载数: 52
- 施引文献: 0