广东清远盆地地下水水文地球化学及流场特征

姜守俊, 许兰芳, 倪泽华, 杨宏宇, 涂世亮. 2023. 广东清远盆地地下水水文地球化学及流场特征. 华南地质, 39(4): 672-685. doi: 10.3969/j.issn.2097-0013.2023.04.008
引用本文: 姜守俊, 许兰芳, 倪泽华, 杨宏宇, 涂世亮. 2023. 广东清远盆地地下水水文地球化学及流场特征. 华南地质, 39(4): 672-685. doi: 10.3969/j.issn.2097-0013.2023.04.008
JIANG Shou-Jun, XU Lan-Fang, NI Ze-Hua, YANG Hong-Yu, TU Shi-Liang. 2023. Hydrogeochemical Characterization and Flow Field of Groundwater in the Qingyuan Basin of Guangdong Province, China. South China Geology, 39(4): 672-685. doi: 10.3969/j.issn.2097-0013.2023.04.008
Citation: JIANG Shou-Jun, XU Lan-Fang, NI Ze-Hua, YANG Hong-Yu, TU Shi-Liang. 2023. Hydrogeochemical Characterization and Flow Field of Groundwater in the Qingyuan Basin of Guangdong Province, China. South China Geology, 39(4): 672-685. doi: 10.3969/j.issn.2097-0013.2023.04.008

广东清远盆地地下水水文地球化学及流场特征

  • 基金项目:

    国家自然科学基金青年科学基金项目(42007237);十堰市自然资源和规划局项目(HBDX21-008)

详细信息
    作者简介: 姜守俊(1980—),男,高级工程师,从事水工环地质调查与研究工作,E-mail:59415122@qq.com
    通讯作者: 许兰芳(1985—),女,博士,从事地球化学研究,E-mail:lanfangivy@163.com
  • 中图分类号: P592

Hydrogeochemical Characterization and Flow Field of Groundwater in the Qingyuan Basin of Guangdong Province, China

More Information
    Corresponding author: XU Lan-Fang
  • 清远盆地水文地质条件复杂,面积占比过半的岩溶含水层流场尚未厘清。结合地下水钠(Na+)、钾(K+)、钙(Ca2+)、镁(Mg2+)、氯离子(Cl-)、硫酸根(SO42-)、碳酸根(CO32-)、重碳酸根(HCO3-)、硝酸根(NO3-)、总溶解固体(TDS)、氢同位素(δD)、氧同位素(δ18O)和氚浓度(3H)共13 项测试指标和钻孔数据,本文分析了清远盆地水文地球化学特征,确定了清远盆地岩溶地下水流场特征。结果表明:北江盆地地下水补给来源为大气降水和地表水;岩溶水水化学类型以HCO3-Ca 型水为主,盆地周边低山丘陵地区水化学类型以HCO3·Cl-Na(Ca·Na)、HCO3·Cl-Ca·Na(Mg)为主。根据地下水补给和径流范围、流场平面形态、埋藏条件等,将清远盆地地下水系统划分为四个区:北江北岸、东南岸、西南岸和西北岸等。这些区块岩溶水在补给区—径流区—排泄区水文地球化学分带特征明显,阳离子交换反应强度和矿化度逐渐增强,TDS总体以北江和滨江为中心,呈现出向四周递减的趋势,表明从山前补给区到主干流排泄区径流速度逐渐减缓。北江西南岸中部地带岩溶水TDS值异常高,表明该地带可能为滞留区。通过以上对清远盆地地下水流场特征的分析,建立了清远盆地岩溶水流场概念模型,为地下水资源管理、地下水污染防治等提供了基础地质依据。
  • 加载中
  • [1]

    窦妍.2010.鄂尔多斯盆地北部白垩系地下水水文地球化学演化及循环规律研究[D].长安大学博士学位论文.

    [2]

    龚亚兵,龚绪龙,许书刚,唐鑫,苏东,吴夏懿.2022.苏南地区地下水化学特征及演化分析[J]. 地质论评,68(6):2207-2218.

    [3]

    顾慰祖,庞忠和,王全九,宋献方.2011.同位素水文学[M].北京:科学出版社.

    [4]

    郭政昇,王娟,赵培.2017.珠江流域大气降水稳定性氢氧同位素特征[J].水文,37(2):78-82.

    [5]

    刘大刚,吕玉香,郭传道.2018.西南典型断陷盆地岩溶地下水径流特征研究[J].地下水,40(1):15-17.

    [6]

    刘梅.2019.清远市区城镇用地扩展情况分析[J].测绘与空间地理信息,42(10):201-203.

    [7]

    卢淑清.2012.论后发展地区城市化战略——以广东清远为例[J].科技经济市场,(2):26-28.

    [8]

    吕小凡,豆敬峰,席航,夏飞雪,雷崇方.2017.氘氧同位素法在周口市地下水研究中的应用[J].地下水,39(5):28-30.

    [9]

    潘欢迎,邹常健,毕俊擘,刘运德,黄丽文.2021.新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J].地质科技通报,40(3):194-203.

    [10]

    王雨旸,杨平恒,张洁茹.2022. 重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别[J].环境科学,43(10):4470-4479.

    [11]

    徐一萍,向喜琼,杨根兰.2020.开阳南江大峡谷岩溶地下水补径排研究[J].水利水电技术,51(2):53-59.

    [12]

    尹观,倪师军,张其春.2001.氘过量参数及其水文地质学意义——以四川九寨沟和冶勒水文地质研究为例[J].成都理工学院学报,(3):251-254.

    [13]

    张保建,徐军祥,马振民,沈照理,亓麟.2010.运用H、O同位素资料分析地下热水的补给来源——以鲁西北阳谷-齐河凸起为例[J].地质通报,29(4):603-609.

    [14]

    张秝湲,陈锁忠,都娥娥.2011.基于同位素与水化学分析法的地下水补径排研究——以苏锡常地区浅层地下水为例[J].南京师大学报(自然科学版),34(2):107-112.

    [15]

    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2017. GB/T 14848-2017 地下水质量标准[S].

    [16]

    中华人民共和国自然资源部. 2021. DZ/T 0064-2021 地下水质量分析方法[S].

    [17]

    朱静静,周宏.2017.水文地质剖面分析在岩溶水系统研究中的应用——以鄂西响水洞岩溶水系统为例[J].安全与环境工程,24(3):1-7+19.

    [18]

    Cook G T, Passo C J, Carter B. 2003. Environmental liquid scintillation analysis[A].//L'Annunziata. Handbook of Radioactivity Analysis, 2nd edtion. San Diego: Academic Press, 537-607.

    [19]

    Dansgaard W. 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436-468.

    [20]

    Duan W H, Ruan J Y, Luo W J, Li T Y, Tian L J, Zeng G N, Zhang D Z, Bai, Y J, Li J L, Tao T, Zhang P Z, Baker A, Tan M. 2016. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 183: 250-266.

    [21]

    Feth J H. 1971. Mechanisms controlling world water chemistry: evaporation-crystallization process[J]. Science, 172(3985): 870-872.

    [22]

    Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090.

    [23]

    Goode D J. 1996. Direct simulation of groundwater age[J]. Water Resources Research, 32: 289-296.

    [24]

    Huang G X, Liu C Y, Sun J C, Zhang M, Jing J H, Li L P. 2018. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta[J]. Science of the Total Environment, 625:510-518.

    [25]

    Ingebritsen S E, Sanford W E, Neuzil C E. 2006. Groundwater in geologic processes, 2nd edition[M]. Cambridge University Press.

    [26]

    Jiang Y J, Yuan D X, Zhang G, He R S. 2004. Effects of land use change on groundwater quality in karst watershed-A case study in Xiaojiang watershed of Yunnan Province[J]. Journal of Natural Resources, 19(6): 707-715.

    [27]

    Lan J C, He Q F, Hu N, Wang P, Ren K, Chen X B. 2013. Effects of anthropogenic on karst groundwater geohydrochemistry in an urbanized area[A]. International Conference on Energy and Environmental Protection, 2418-2423.

    [28]

    Li P Y, Wu J H, Qian H. 2013. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China[J]. Environmental Earth Sciences, 69(7):2211-2225.

    [29]

    Liu C H, Wang W, Zhang G H, Zhu H H, Wang J J, Guo Y. 2022. Hydrochemical and isotope (18O, 2H and 3H) characteristics of karst water in central Shandong Province: A case study of the Pingyi-Feixian Region[J]. Minerals, 12(2), 154.

    [30]

    Lu L, Chen Y D, Zou S Z, Fan L J, Lin Y S, Wang Z. 2022. Hydrochemical characteristics and water quality evaluation of karst groundwater in typical industrial cities[J]. Carsologica Sinica, 41(4): 588-598.

    [31]

    Pu J B, Yuan D X, Xiao Q, Zhao H P. 2015. Hydrogeochemical characteristics in karst subterranean streams: A case history from Chongqing, China[J]. Carbonates and Evaporites, 30(3): 307-319.

    [32]

    Schoeller H. 1967. Qualitative evaluation of groundwater resources[A].//Schoeller H. Methods and techniques of groundwater investigation and development, Water resource series No. 33, UNESCO, Paris, 44-52.

    [33]

    Tóth J. 1963. A Theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 68: 4795-4812.

    [34]

    Tóth J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 7: 1-14.

    [35]

    Tóth J. 2009a. Gravitational systems of groundwater flow: theory, evaluation, utilization[M]. Cambridge: Cambridge University Press.

    [36]

    Tóth J. 2009b. Gravity flow of groundwater: a geologic agent[A].//Tóth J. Gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge: Cambridge University Press, 91-127.

    [37]

    Wu C, Wu X, Mu W P, Zhu G. 2020. Using isotopes (H, O, and Sr) and major ions to identify hydrogeochemical characteristics of groundwater in the Hongjiannao Lake Basin, Northwest China[J].Water, 12(5): 1467.

    [38]

    Zhang F G, Huang G X, Hou Q X, Liu C Y, Zhang Y, Zhang Q. 2019. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces[J]. Journal of Hydrology, 577: 124004.

  • 加载中
计量
  • 文章访问数:  391
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2023-10-30
修回日期:  2023-11-16

目录