大别造山带汤池早白垩世富碱侵入岩成因及地质意义

朱志鹏, 王连训, 朱煜翔, 李乐广, 马昌前. 2024. 大别造山带汤池早白垩世富碱侵入岩成因及地质意义. 华南地质, 40(1): 28-55. doi: 10.3969/j.issn.2097-0013.2024.01.002
引用本文: 朱志鹏, 王连训, 朱煜翔, 李乐广, 马昌前. 2024. 大别造山带汤池早白垩世富碱侵入岩成因及地质意义. 华南地质, 40(1): 28-55. doi: 10.3969/j.issn.2097-0013.2024.01.002
ZHU Zhi-Peng, WANG Lian-Xun, ZHU Yu-Xiang, LI Le-Guang, MAChang-Qian. 2024. Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen. South China Geology, 40(1): 28-55. doi: 10.3969/j.issn.2097-0013.2024.01.002
Citation: ZHU Zhi-Peng, WANG Lian-Xun, ZHU Yu-Xiang, LI Le-Guang, MAChang-Qian. 2024. Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen. South China Geology, 40(1): 28-55. doi: 10.3969/j.issn.2097-0013.2024.01.002

大别造山带汤池早白垩世富碱侵入岩成因及地质意义

  • 基金项目:

    国家自然科学基金项目(No. 42072082)和湖北省自然科学基金项目(2022CFB116)

详细信息
    作者简介: 朱志鹏(1998—),男,硕士研究生,主要从事碱性岩岩石学研究,E-mail: zzp15007185471@163.com
    通讯作者: 通讯作者:王连训(1983—),男,教授,博士生导师,主要从事岩浆岩岩石学研究与教学,E-mail: lianxunwang@cug.edu.cn
  • 中图分类号: P581

Petrogenesis and Geological Implications of the Early Cretaceous Tangchi Alkaline Intrusive Rocks Within the Dabie Orogen

More Information
    Corresponding author: WANG Lian-Xun
  • 本文对大别造山带北淮阳东段汤池地区早白垩世富碱侵入岩进行岩石学、锆石U-Pb年代学、岩石地球化学及锆石Lu-Hf 同位素分析,揭示其成因及地质意义。该套岩石主要由正长花岗岩、石英正长岩和正长斑岩组成,伴有辉绿玢岩发育。锆石U-Pb定年结果显示,辉绿玢岩、正长花岗岩和正长斑岩分别形成于130.3±1.7 Ma、128.4±1.7 Ma和122.3±1.5 Ma,为早白垩世岩浆活动的产物。汤池辉绿玢岩相对贫硅(SiO2=45.23~56.92 wt.%)和富碱(Na2O+K2O=5.24~8.04 wt.%),Mg#值较高(平均值为48);而其他岩类具有高硅(SiO2=62.44~77.25 wt.%)、高碱(Na2O+K2O=7.97~10.35 wt.%)、低CaO含量以及较高的Ga/Al 和FeOT/MgO比值,与典型的A型花岗岩化学特征相似。辉绿玢岩大多数锆石ε Hf ( t )值变化范围为-6.4~-2.9,全岩Nb/Ta 比值17.1~22.0(接近地幔Nb/Ta 值17.5),表明其为富集地幔部分熔融的产物。汤池A型花岗岩具有更富集的Hf 同位素组成,ε Hf ( t )为-23.3~-3.5,以及更低的全岩Nb/Ta 比值(11.2~22.7,平均值为16.5),暗示它们是由幔源玄武质岩浆底侵诱发下地壳部分熔融产生的长英质岩浆经历分异演化的产物。结合区域资料分析认为,大别造山带北淮阳地区在早白垩世碰撞挤压作用结束,开始进入后碰撞伸展阶段。
  • 加载中
  • [1]

    安徽省地矿局313 地质队.1995.河棚幅H-50-30-B 大关幅H-50-31-A桐城幅H-50-30-D孔城幅H-50-31-C1/5 万区域地质调查报告[R].

    [2]

    安徽省地质调查院.2011.六安市幅(I50C001002)1:250000区域地质调查报告[R].

    [3]

    陈芳,彭智,邱军强,董婷婷,柳丙全.2016.安徽金寨岩体地质和地球化学特征及LA-ICP-MS 锆石U-Pb 年龄[J].地质学报,90(5):879-895.

    [4]

    陈玲,马昌前,张金阳,刘园园,佘振兵,张超.2012.首编大别造山带侵入岩地质图(1:50 万)及其说明[J].地质通报,31(1):13-20.

    [5]

    陈伟,徐兆文,李红超,杨小男,陈进全,王浩,王少华.2013.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示[J].地质学报,87(10):1510-1524.

    [6]

    董传万,徐夕生,闫强,林秀斌,竺国强.2007.浙东晚中生代壳幔相互作用的新例证—新昌儒岙辉绿岩-花岗岩复合岩体的年代学与地球化学[J]. 岩石学报,23(6):1303-1312.

    [7]

    贾小辉,王强,唐功建.2009.A 型花岗岩的研究进展及意义[J].大地构造与成矿学,33(3):465-480.

    [8]

    李良林,周汉文,陈植华,王锦荣,陈正华,肖依.2013.福建太姥山地区和鼓山地区A型花岗岩对比及其地球动力学意义[J].现代地质,27(3):509-524.

    [9]

    刘晓强,闫峻,王爱国.2018.北淮阳汞洞冲铅锌矿区石英正长斑岩成因[J].地质学报,92(1):41-64.

    [10]

    鹿献章,周博文,彭智,邱军强,陈芳,董婷婷,柳丙全,陈志洪.2017. 北淮阳东段河棚岩体地球化学特征、LA-ICP-MS锆石U-Pb 年龄及地质意义[J].华东地质,38(2):81-90.

    [11]

    马昌前,杨坤光,许长海,李志昌.1999.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理[J].岩石学报,15(3):379-395.

    [12]

    任志,周涛发,袁峰,张达玉,范裕,范羽.2014.安徽沙坪沟钼矿区中酸性侵入岩期次研究——年代学及岩石化学约束[J].岩石学报,30(4):1097-1116.

    [13]

    商力.2012.安徽北淮阳地区燕山晚期岩浆岩成因及其大地构造背景[D].南京大学硕士学位论文.

    [14]

    苏玉平,唐红峰,侯广顺,刘丛强.2006.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J].地球化学,35(1):55-67.

    [15]

    万俊,吴波,郭盼,刘万亮,刘成新.2017.西大别造山带夏店岩体锆石U-Pb 年代学、地球化学特征及其A型花岗岩的厘定[J].岩石矿物学杂志,36(5):633-645.

    [16]

    王爱枝.2009.河南商城汤家坪铝质A型花岗岩的地球化学特征及其构造指示意义[J]. 华南地质与矿产,25(4):10-16.

    [17]

    王德滋,赵广涛,邱检生.1995.中国东部晚中生代A型花岗岩的构造制约[J].高校地质学报,1(2):13-21.

    [18]

    王对兴,管琪,高万里,李春麟,张聚全,赵凯华.2019.浙东天台地区早白垩世花岗岩及暗色包体锆石U-Pb 年龄,地球化学及其成因[J].中国地质,46(6):1512-1529.

    [19]

    王强,赵振华,熊小林.2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志,19(4):297-306.

    [20]

    王世明,马昌前,王琳燕,张金阳,杨颖.2010.大别山早白垩世基性脉岩SHRIMP锆石U-Pb 定年、地球化学特征及成因[J].地球科学,35(4):572-584.

    [21]

    王玉玺,王金荣,周小玲,王怀涛,第鹏飞,王晓伟,陈万峰.2017.Columbia 超大陆裂解:来自塔里木克拉通东南缘大红山A型花岗岩的证据[J].地质学报,91(11):2369-2386.

    [22]

    吴福元,李献华,杨进辉,郑永飞.2007.花岗岩成因研究的若干问题[J].岩石学报,23(6):1217-1238.

    [23]

    吴皓然,谢玉玲,钟日晨,王莹.2020.大别造山带银水寺铅锌矿区正长花岗斑岩脉锆石U-Pb 年代学、地球化学特征和地质意义[J].地球科学,45(3):910-929.

    [24]

    吴齐,牛漫兰,朱光,王婷,费玲玲.2016.郯庐断裂带庐江段长岗A型花岗岩锆石U-Pb定年、岩石成因及其意义[J].岩石学报,32(4):1031-1048.

    [25]

    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,49(16):1589-1604.

    [26]

    谢智,郑永飞,闫峻,钱卉.2004.大别山沙村中生代A型花岗岩和基性岩的源区演化关系[J]. 岩石学报,20(5):1175-1184.

    [27]

    谢玉玲,李腊梅,郭翔,张健,姚羽,王爱国.2015.安徽西冲钼矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关系研究[J].岩石学报,31(7):1929-1942.

    [28]

    徐树桐,江来利,刘贻灿,张勇.1992.大别山(安徽部分)的构造格局和演化过程[J].地质学报,66(1):1-14.

    [29]

    徐夕生,周新民,王德滋.1999.壳幔作用与花岗岩成因——以中国东南沿海为例[J].高校地质学报,5(3):241-250.

    [30]

    许保良,阎国翰,张臣.1998.A 型花岗岩的岩石学亚类及其物质来源[J].地学前缘,5:113-125.

    [31]

    杨春玥,何俊,杨一增,陈福坤.2020.大别山造山带新县二长花岗岩体地球化学与岩石成因[J].高校地质学报,26(2):132-146.

    [32]

    杨义忠,王徽,蔡杨,李明辉,柳丙全.2018.北淮阳东段西汤池岩体地球化学特征、锆石U-Pb 定年及成因[J].地质学刊,42(2):188-196.

    [33]

    杨泽强.2007.河南省商城县汤家坪钼矿成矿模式研究[D].中国地质大学(北京)硕士学位论文.

    [34]

    尤静静,吴昌雄,蒋之飞,屠江海,陈松,肖霞,李随云,叶建华.2019.湖北大悟娘娘顶花岗岩地球化学特征及其地质意义[J].资源环境与工程,33(1):14-21.

    [35]

    张徐,张达玉,蒋华,李光惠,付翔,詹建华.2019.安徽霍山陈家湾岩体地球化学特征、年代学及其地质意义[J].合肥工业大学学报(自然科学版),42(7):988-998.

    [36]

    张怀东,王波华,郝越进,程松,项斌.2012.安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息[J].矿床地质,31(1):41-51.

    [37]

    郑永飞.2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报,53(18):2129-2152.

    [38]

    周红升,马昌前,张超.2008.华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类年代学、地球化学及其启示[J].岩石学报,24(1):49-64.

    [39]

    周红升,苏华,马昌前.2009a.灵山岩体的形成时代、构造背景及其A型花岗岩的厘定[J].信阳师范学院学报(自然科学版),22(2):222-226.

    [40]

    周红升,马昌前,陈玲.2009b.大别造山带研子岗碱性岩体成因及其构造意义:锆石U-Pb 年龄和地球化学制约[J].岩石学报,25(5):1079-1091.

    [41]

    周泰禧,陈江峰,张巽,李学明.1995.北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义[J].地质论评,41(2):144-151.

    [42]

    周伟伟,蔡剑辉,阎国翰,王亚莹,闫星光,闫志娇.2014.安徽金寨响洪甸碱性侵入岩年代学、岩石地球化学及其意义[J].矿床地质,33(1):104-122.

    [43]

    周新民,李武显.2000.中国东南部晚中生代火成岩成因岩石圈消减和玄武岩底侵相结合的模式关系[J].自然科学进展,1:240-247.

    [44]

    Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1): 43-55.

    [45]

    Boehnke P, Watson E B, Trail D, Harrison T M, Schmitt A. 2013. Zircon saturation re-revisited[J]. Chemical Geology, 351: 324-334. Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133.

    [46]

    Chen J F, Yan J, Xie Z, Xu X, Xing F. 2001. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 719-731.

    [47]

    Chen L, Ma C Q, She Z B, Mason R, Zhang J Y, Zhang C. 2009. Petrogenesis and tectonic implications of A-type granites in the Dabie orogenic belt, China: geochronological and geochemical constraints[J]. Geological Magazine, 146(5): 638-651.

    [48]

    Condie K C, Pisarevsky S A, Puetz S J, Roberts N M W, Spencer C J. 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events[J]. Earth and Planetary Science Letters, 610: 118125.

    [49]

    Cong B L, Wang Q C, Zhai M G, Zhang R Y, Zhao Z H, Ye K. 1994. Ultrahigh pressure metamorphic rocks in the Dabie-Su Lu region, China: Their formation and exhumation[J]. The Island Arc, 3(13): 135-150.

    [50]

    Dai F Q, Zhao Z F, Dai L Q, Zheng Y F. 2016. Slab-mantle interaction in the petrogenesis of andesitic magmas: geochemical evidence from postcollisional intermediate volcanic rocks in the Dabie Orogen, China[J]. Journal of Petrology, 57(6): 1109-1134.

    [51]

    Dai F Q, Zhao Z F, Zheng, Y F. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabie orogen[J]. Chemical Geology, 454: 25-43.

    [52]

    De la Roche H D, Leterrier J T, Grandclaude P, Marchal M. 1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses—its relationships with current nomenclature[J]. Chemical Geology, 29(1-4): 183-210.

    [53]

    Dong Y P, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, Central China[J]. Gondwana Research, 29(1): 1-40.

    [54]

    Duchesne J C, Wilmart E. 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite[J]. Journal of Petrology, 38(3): 337-369.

    [55]

    Eby G N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26: 115-134.

    [56]

    Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644.

    [57]

    Ferry J M, Waston E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 154(4): 429-437.

    [58]

    Floyd P A, Winchester J A. 1975. Magma type and tectonic setting discrimination using immobile elements[J]. Earth and Planetary Science Letters, 27(2): 211-218.

    [59]

    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3-4): 347-359.

    [60]

    Hoskin P W O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 69(3): 637-648.

    [61]

    Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.

    [62]

    Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1-2): 119-146.

    [63]

    Jiang X Y, Ling M X, Wu K. 2018. Insights into the origin of coexisting A1- and A2-type granites: Implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, Eastern China[J]. Lithos, 318: 230-243.

    [64]

    Kamaunji V D, Wang L X, Ahmed H A, Zhu Y X, Vincent V I, Girei M B. 2020. Coexisting A1 and A2 granites of Kudaru Complex: implications for genetic and tectonic diversity of A-type granite in the Younger Granite province, north-central Nigeria[J]. International Journal of Earth Sciences, 109: 511-535.

    [65]

    King P L, White A J R, Chappell B W. 1997. Characterization and origin of aluminous A type granites of the Lachalan Fold Belt, southeastern Australia[J]. Journal of Petrology, 36: 371-391.

    [66]

    Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In Situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257: 34-43.

    [67]

    Loiselle M C, Wones D R. 1979. Characteristics and origin of anorogenic granites[A]. Geological Society of America, Abstracts with Programs, 11: 468.

    [68]

    Ma C Q, Ehlers C, Xu C H, Li Z C, Yang K G. 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics[J]. Precambrian Research, 102(3-4): 279-301.

    [69]

    Ma Q, Zheng J P, Griffin W L, Zhang M, Tang H Y, Su Y P, Ping X Q. 2012. Triassic“Adakitic”Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust[J]. Lithos, 149:159-173.

    [70]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101: 635-643.

    [71]

    Martin R F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 91(1-4): 125-136.

    [72]

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3-4): 207-218.

    [73]

    Middlemost E A. 1975. The basalt clan[J]. Earth-Science Reviews, 11(4): 337-364.

    [74]

    Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 31(6): 529-532.

    [75]

    Munker C, Pfander J A, Weyer S, Buchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics[J]. Science, 301(5629): 84-87.

    [76]

    Nardi L V S, Bonin B. 1991. Post-orogenic and non-orogenic alkaline granites associations: The Saibro intrusive suite, southern Brazil-A case study[J]. Chemical Geology, 92: 197-211.

    [77]

    Pearce J A, Cann J R. 1973. Tectonoic setting of basic volcanic rocks determined using trace element analyse[J]. Earth and Planetary Science Letters, 19(2): 290-300.

    [78]

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33-47.

    [79]

    Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[A].//Thrope R S. Andesites: Orogenic Andesites and Related rocks. John Wiley and Sons, Chichester: 528-548.

    [80]

    Pearce J A. 1996. Source and settings of granitic rocks[J]. Episodes, 19(4): 120-125.

    [81]

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.

    [82]

    Rapp R P, Watson, E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931.

    [83]

    Shellnutt J G, Zhou M F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 243(3-4): 286-316.

    [84]

    Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3-4): 311-324.

    [85]

    Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the“missing Nb paradox”[J]. Geology, 41(3): 303-306.

    [86]

    Sun S S, McDonough W F. 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.

    [87]

    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33: 241-165.

    [88]

    Tischendorf G, Palchen W. 1985. Composition of the continental crust[J]. Zeitschrift Fuer Geologische Wissenschaften, 13(5): 615-627.

    [89]

    Wang Q, Wyman D A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 71(10): 2609-2636.

    [90]

    Wang Y J, Fan W M, Pen T P, Zhang H F, Guo F. 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China: evidence from40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks[J]. Chemical Geology, 220(3-4): 165-189.

    [91]

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419.

    [92]

    Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1-2): 143-173.

    [93]

    Xie L, Wang R C, Chen X M, Qiu J S, Wang D Z. 2005. Th-rich zircon from peralkaline A-type granite: Mineralogical features and petrological implications[J]. Chinese Science Bulletin, 50(8): 809-817.

    [94]

    Xu H J, Ma C Q, Song Y R, Zhang J Y. 2012. Early Cretaceous intermediate-mafic dykes in the Dabie orogen, eastern China: Petrogenesis and implications for crust-mantle interaction[J]. Lithos, 154: 83-99.

    [95]

    Xu H J, Ma C Q, Ye K. 2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry[J]. Chemical Geology, 240(3-4): 238-259.

    [96]

    Yan Q S, Shi X F, Castill P R. 2014. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective[J]. Journal of Asian Earth Sciences, 85: 178-201.

    [97]

    Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006. Zircon isotope evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 146(1-2): 16-34.

    [98]

    Zheng Y F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 53: 3081-3104.

    [99]

    Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 29(1): 26-33.

    [100]

    Zhu Y X, Wang L X, Ma C Q, He Z X, Deng X, Tian Y. 2022. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China)[J]. Lithos, 412: 106595.

    [101]

    Zhu Y X, Wang L X, Xiong Q H, Ma C Q, Zhang X, Zhang C, Ahmed H A. 2020. Origin and evolution of ultrapotassic intermediate magma: The Songxian syenite massif, Central China[J]. Lithos, 366: 105554.

  • 加载中
计量
  • 文章访问数:  138
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2023-08-31
修回日期:  2023-10-31

目录