LST reversion and downscaling based on FY-3D/MWRI L1B brightness temperature data
-
摘要: 基于2020年2月1日FY-3C VIRR LST和FY-3D MWRI L1B亮温数据,以18°~54°N,73°~135°E的区域为样例区,利用统计回归模型和层次贝叶斯融合模型,分别进行FY-3D MWRI L1B LST反演和降尺度研究,构建了基于FY-3D 单频率水平和垂直极化亮温的LST二元线性回归反演模型及基于FY-3D反演LST和FY-3C VIRR LST的层次贝叶斯融合降尺度模型,并以MYD11A1 day LST为参考数据进行了验证。结果表明: 反演统计模型,对于FY-3D降轨数据,平均偏差-1.28 K,误差标准差8.85 K,均方根误差8.85 K,对于FY-3D升轨数据,平均偏差-0.81 K,误差标准差6.74 K,均方根误差6.78 K; 层次贝叶斯融合降尺度模型,对于FY-3D降轨数据,平均偏差0.50 K,误差标准差5.45 K,均方根误差5.41 K,对于FY-3D升轨数据,平均偏差0.25 K,误差标准差5.54 K,均方根误差5.54 K,精度满足需求,可以为被动微波LST反演与降尺度提供思路。
-
关键词:
- FY-3D MWRI /
- VIRR LST /
- 层次贝叶斯 /
- 统计回归 /
- 降尺度
Abstract: Based on FY-3C VIRR LST and FY-3D/MWRI L1B brightness temperature data of February 1, 2020 and taking the area with geographical coordinates of 18°~54°N, 73°~135°E as an example, the LST reversion and downscaling based on the FY-3D/MWRI L1B data were studied using a statistical regression model and a hierarchical Bayesian fusion model. As a result, two models were constructed, namely a LST binary linear regression inversion model based on FY-3D single-channel horizontal and vertical polarization-corrected brightness temperature data and a hierarchical Bayesian fusion downscaling model based on FY-3D retrieved LST and FY-3C VIRR LST. They were verified with the LST on the day of MYD11A1 as reference data, obtaining the following results. As for the reversion statistical model, the mean bias, error standard deviation, and root mean square error were -1.28 K, 8.85 K, and 8.85 K, respectively for the FY-3D descending data and were -0.81 K, 6.74 K, and 6.78 K, respectively for the FY-3D ascending data. As for the hierarchical Bayesian fusion downscaling model, the mean bias, error standard deviation, and root mean square error were 0.50 K, 5.45 K, and 5.41 K, respectively for the FY-3D descending data and were 0.25 K, 5.54 K, and 5.54 K, respectively for the FY-3D ascending data. This study will provide a novel idea for the LST inversion and downscaling of passive microwaves.-
Key words:
- FY-3D MWRI /
- VIRR LST /
- hierarchical Bayesian /
- statistical regression /
- downscaling /
-
-
[1] 刘晶, 马红章, 杨乐, 等. 基于被动微波的地表温度反演研究综述[J]. 遥感技术与应用, 2012, 27(6):812-821.
[2] Liu J, Ma H Z, Yang L, et al. A survey of surface temperature retrieval by passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2012, 27(6):812-821.
[3] Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature[J]. International Journal of Remote Sensing, 2004, 25(1):261-274.
[4] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131(131):14-37.
[5] Duan S B, Li Z L, Leng P. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data[J]. Remote Sensing of Environment:An Interdisciplinary Journal, 2017,(195):107-117.
[6] 刘礼杨, 苏泳娴, 陈修治, 等. 一种针对旱季与雨季差异的AMSR-E被动微波遥感地表温度反演经验模型[J]. 热带地理, 2017, 37(3):434-442.
[7] Liu L Y, Su Y X, Chen X Z, et al. AMSR-E passive microwave remote sensing surface temperature inversion experimental model focused on differences between dry season and rainy season[J]. Tropical Geography, 2017, 37(3):434-442.
[8] Mcfarland M J, Miller R L, Neale C M U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures[J]. IEEE Transactions on Geoence & Remote Sensing, 1990, 28(5):839-845.
[9] Njoku E G, Li L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Transactions on Geoence & Remote Sensing, 1999, 37(1):79-93.
[10] 刘曾林, 唐伯惠, 李召良. AMSR-E微波数据反演裸地地表温度算法研究[J]. 科技导报, 2009, 27(4):24-27.
[11] Liu C L, Tang B H, Li Z L. Calculation of land surface temperature based on AMSR-E data[J]. Science & Technology Review, 2009, 27(4):24-27.
[12] 毛克彪, 施建成, 李召良, 等. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感, 2005, 17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
[13] Mao K B, Shi J C, Li Z L, et al. The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J]. Remote Sensing for Land and Resources, 2005, 17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
[14] 毛克彪, 施建成, 李召良, 等. 一个针对被动微波AMSR-E数据反演地表温度的物理统计算法[J]. 中国科学:地球科学, 2006, 36(12):1170-1176.
[15] Mao K B, Shi J C, Li Z L, et al. A physical statistical algorithm for land surface temperature retrieval from passive microwave AMSR-E data[J]. Science in China Ser.D Earth Sciences, 2006, 36(12):1170-1176.
[16] 武胜利, 杨虎. AMSR-E亮温数据与MODIS陆表分类产品结合反演全球陆表温度[J]. 遥感技术与应用, 2007, 22(2):234-237.
[17] Wu S L, Yang H. Global land surface temperature retrieval with AMSR-E brightness temperature and MODIS land cover type products[J]. Remote Sensing Technology and Application, 2007, 22(2):234-237.
[18] 潘广东, 王超, 田国良. SSM/I微波辐射计数据陆面温度反演[J]. 遥感学报, 2001, 5(4):254-258.
[19] Pan G D, Wang C, Tian G L. Land surface temperature retrieval with SSM/I data[J]. Journal of Remote Sensing, 2001, 5(4):254-258.
[20] Zhu Y X, Kang E L, Bo Y C, et al. Hierarchical bayesian model based on robust fixed rank filter for fusing MODIS SST and AMSR-E SST[J]. Photogrammetric Engineering and Remote Sensing, 2019, 85(2):119-131.
[21] Zhu Y X, Bo Y C, Zhang J Z, et al. Fusion of Multisensor SSTs Based on the Spatiotemporal Hierarchical Bayesian Model[J]. Journal of Atmospheric & Oceanic Technology, 2018, 35(1):91-109.
-
计量
- 文章访问数: 959
- PDF下载数: 55
- 施引文献: 0