中国自然资源航空物探遥感中心主办
地质出版社出版

基于PROSPECT-VISIR模型构建新植被水分指数

王界, 王光辉, 刘宇, 齐建伟, 张涛. 2022. 基于PROSPECT-VISIR模型构建新植被水分指数. 自然资源遥感, 34(2): 56-62. doi: 10.6046/zrzyyg.2021216
引用本文: 王界, 王光辉, 刘宇, 齐建伟, 张涛. 2022. 基于PROSPECT-VISIR模型构建新植被水分指数. 自然资源遥感, 34(2): 56-62. doi: 10.6046/zrzyyg.2021216
WANG Jie, WANG Guanghui, LIU Yu, QI Jianwei, ZHANG Tao. 2022. Construction of new vegetation water index based on PROSPECT-VISIR model. Remote Sensing for Natural Resources, 34(2): 56-62. doi: 10.6046/zrzyyg.2021216
Citation: WANG Jie, WANG Guanghui, LIU Yu, QI Jianwei, ZHANG Tao. 2022. Construction of new vegetation water index based on PROSPECT-VISIR model. Remote Sensing for Natural Resources, 34(2): 56-62. doi: 10.6046/zrzyyg.2021216

基于PROSPECT-VISIR模型构建新植被水分指数

  • 基金项目:

    国家重点研发计划、高分辨率对地观测系统重大专项”高分遥感测绘应用系统(二期)”(编号: 42-Y30B04-9001-19/21(42-Y30B04-9001-19/21)

详细信息
    作者简介: 王界(1990-),男,硕士,主要从事地表参量定量反演、热红外遥感及应用研究。Email: wangjie0039@163.com
  • 中图分类号: TP79

Construction of new vegetation water index based on PROSPECT-VISIR model

  • 利用PROSPECT-VISIR叶片模型,获得了不同叶片参数条件下可见光—中红外波谱区间的叶片反射率模拟数据,分析了植被叶片光谱特征波段,找到叶片反射率对含水量变化敏感的波段范围。在几种常见的可见光—近红外波段植被水分指数基础上,加入中红外波段反射率,提出了4种新型植被水分指数模型: 中红外归一化差异红外指数(mid-infrared normalized difference infrared index,NDIIM)、中红外归一化水分指数(mid-infrared normalized difference water index,NDWIM)、中红外归一化多波段干旱指数(mid-infrared normalized multi-band drought index,NMDIM)和中红外归一化植被指数(mid-infrared normalized difference vegetation index,NDVIM)。利用叶片反射率模拟数据,比较了4种新型植被水分指数与传统水分指数对叶片含水量的敏感性,建立了新植被水分指数与叶片含水量和干物质含量的定量关系模型,其中NMDIM的关系式决定系数R2达到0.972,表现最好。文章基于NMDIM和NDIIM发展了一种双植被指数的叶片含水量估算模型,实现在干物质含量未知情况下对叶片含水量的准确估算(均方根误差为0.0021g/cm2)。
  • 加载中
  • [1]

    Datt B. Remote sensing of water content in Eucalyptus leaves[J]. Australian Journal of Botany, 1999, 47(6):909-923. [2] Penuelas J, Gamon J A, Griffin K L, et al. Assessing community type,plant biomass,pigment composition,and photosynthetic efficiency of aquatic vegetation from spectral reflectance[J]. Remote Sensing of Environment, 1993, 46(2):110-118. [3] Bauer M E, Daughtry C S T, Biehl L L, et al. Field spectroscopy of agricultural crops[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986(1):65-75.[4] Chuvieco E, Riano D, Aguado I, et al. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data:Applications in fire danger assessment[J]. International Journal of Remote Sensing, 2002, 23(11):2145-2162. [5] Hunt E R, Rock B N, Nobel P S. Measurement of leaf relative water content by infrared reflectance[J]. Remote Sensing of Environment, 1987, 22(3):429-435. [6] Bannari A, Morin D, Bonn F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1-2):95-120. [7] Penuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International Journal of Remote Sensing, 1997, 18(13):2869-2875. [8] Ceccato P, Gobron N, Flasse S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data:Part 1:Theoretical approach[J]. Remote Sensing of Environment, 2002, 82(2):188-197. [9] Hardisky M, Klemas V, Smart M. The influence of soil salinity,growth form,and leaf moisture on the spectral radiance[J]. Spartina Alterniflora, 1983, 49:77-83.[10] Gao B C. NDWI:A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266. [11] Wang L L,and John J Q. NMDI:A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters, 2007, 34:20.[12] Rouse J W, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351:309.[13] Boyd D S. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m)[J]. International Journal of Remote Sensing, 1999, 20(5):1017-1023. [14] Kaufman Y J, Remer L A. Detection of forests using mid-IR reflectance:An application for aerosol studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3):672-683. [15] Carter G A. Primary and secondary effects of water content on the spectral reflectance of leaves[J]. American Journal of Botany, 1991, 78(7): 916-924. [16] Libonati R, DaCamara C C, Pereira J M C, et al. A new optimal index for burnt area discrimination in satellite imagery[C]// 2007 EUMETSAT Meteorological Satellite Conference and the 15th American Meteorological Society (AMS) Satellite Meteorological & Oceanography Conference.Germany:Darmstadt, 2007:24-28.[17] Vescovo L, Gianelle D. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy)[J]. Advances in Space Research, 2008, 41(11):1764-1772. [18] Tang B H, Jia Y Y, Zhang X, et al. Vegetation monitoring with surface bi-directional reflectivities in MODIS near-IR and mid-IR channels[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2007:3333-3336.[19] Ullah S, Skidmore A K, Naeem M, et al. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis[J]. Science of the Total Environment, 2012, 437:145-152. [20] Ullah S, Skidmore A K, Ramoelo A, et al. Retrieval of leaf water content spanning the visible to thermal infrared spectra[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93:56-64. [21] Arshad M, Ullah S, Khurshid K, et al. Estimation of leaf water content from mid-and thermal-infrared spectra by coupling genetic algorithm and partial least squares regression[J]. Journal of Applied Remote Sensing, 2018, 12(2):022203.[22] Jacquemoud S, Baret F. PROSPECT:A model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2):75-91. [23] Gerber F, Marion R, Olioso A., et al. Modeling directional-hemispherical reflectance and transmittance of fresh and dry leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR model[J]. Remote Sensing of Environment, 2011, 115(2):404-414.

  • 加载中
计量
  • 文章访问数:  775
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2021-07-14
刊出日期:  2022-06-20

目录