Lightweight DeepLabv3+ building extraction method from remote sensing images
-
摘要: 快速从遥感影像中提取出具有较高精度的建筑物是遥感智能化应用服务的重要研究内容之一。针对DeepLab模型对遥感影像建筑物边缘分割不精确、分割大尺度目标存在孔洞现象、网络参数量大等问题,提出一种轻量级DeepLabv3+模型的遥感影像建筑物提取方法。该方法使用轻量级网络MobileNetv2替换DeepLabv3+的主干网络Xception,从而减少参数量、提高训练速度; 对空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)的空洞率进行优化组合,提高多尺度语义特征提取效果。改进的模型在WHU和Massachusetts数据集上进行验证实验,结果表明,在WHU数据集中得到的交并比和F1分数分别为82.37%和92.89%,比DeepLabv3+分别提高2.71百分点和2.14百分点,在Massachusetts数据集中的交并比和F1分数比DeepLabv3+分别提高2.04百分点和2.32百分点,训练参数量和训练时间减少,建筑物提取精度得到有效提高,能够满足快速提取高精度建筑物的要求。
-
关键词:
- 深度学习 /
- 语义分割 /
- 改进ASPP /
- DeepLabv3+ /
- MobileNetv2
Abstract: Fast extraction of buildings with high accuracy from remote sensing images is an important research of remote sensing intelligent application services. To address the problems of imprecise segmentation of building edge in remote sensing images, holes in large-scale target segmentation, and a large amount of network parameters in the DeepLab model, a lightweight DeepLabv3+ model for building extraction from remote sensing images is proposed. In this method, the lightweight network MobileNetv2 is used to replace Xception, the backbone network of DeepLabv3+, so as to reduce the number of parameters and improve the training speed; The hole rate of hole convolution in ASPP is optimized to improve the effect of multi-scale semantic feature extraction. The improved model has been tested on WHU and Massachusetts data sets. The results show that the IOU and F1 score in WHU dataset are 82.37% and 92.89%, respectively, 2.71 percentage points and 2.14 percentage points higher than those of DeepLabv3+, 2.04 percentage points, and 2.32 percentage points higher than those of DeepLabv3+ in Massachusetts data set. The number of training parameters and training time is reduced, and the accuracy of the building extraction is effectively improved, which can meet the requirements of fast extraction of high-precision buildings.-
Key words:
- deep learning /
- semantic segmentation /
- improved ASPP /
- DeepLabv3+ /
- MobileNetv2
-
-
[1] 范荣双, 陈洋, 徐启恒, 等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1):34-41.[1] Fan R S, Chen Y, Xu Q H, et al. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):34-41.[2] 张浩然, 赵江洪, 张晓光. 利用U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3):143-150.[2] Zhang H R, Zhao J H, Zhang X G. High-resolution image building extraction using U-net neural network[J]. Remote Sensing Information, 2020, 35(3):143-150.[3] 许泽宇, 沈占锋, 李杨, 等. 结合模糊度和形态学指数约束的深度学习建筑物提取[J]. 地球信息科学学报, 2021, 23(5):918-927. [3] Xu Z Y, Shen Z F, Li Y, et al. Building extraction by deep learning method combined with ambiguity and morphological index constraints[J]. Journal of Geo-Information Science, 2021, 23(5):918-927.[4] 唐璎, 刘正军, 杨懿, 等. 基于特征增强和ELU的神经网络建筑物提取研究[J]. 地球信息科学学报, 2021, 23(4):692-709. [4] Tang Y, Liu Z J, Yang Y, et al. Research on building extraction based on neural network with feature enhancement and ELU activation function[J]. Journal of Geo-Information Science, 2021, 23(4):692-709.[5] 刘亦凡, 张秋昭, 王光辉, 等. 利用深度残差网络的遥感影像建筑物提取[J]. 遥感信息, 2020, 35(2):59-64.[5] Liu Y F, Zhang Q Z, Wang G H, et al. Building extraction in remote sensing imagery based on deep residual network[J]. Remote Sensing Information, 2020, 35(2):59-64.[6] 陈凯强, 高鑫, 闫梦龙, 等. 基于编解码网络的航空影像像素级建筑物提取[J]. 遥感学报, 2020, 24(9):1134-1142.[6] Chen K Q, Gao X, Yan M L, et al. Building extraction in pixel level from aerial imagery with a deep encoder-decoder network[J]. Journal of Remote Sensing, 2020, 24(9):1134-1142.[7] 叶沅鑫, 谭鑫, 孙苗苗, 等. 基于增强DeepLabV3网络的高分辨率遥感影像分类[J]. 测绘通报, 2021(4):40-44.[7] Ye Y X, Tan X, Sun M M, et al. High-resolution remote sensing image classification based on improved DeepLabV3 network[J]. Bulletin of Surveying and Mapping, 2021(4):40-44.[8] Lecun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [9] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.[10] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014:1409-1556.[11] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[EB/OL].(2015-12-10)[2021-05-12]. https://arxiv.org/abs/1512.03385.[12] Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].(2016-11-04)[2021-05-12]. https://arxiv.org/abs/1602.07360.[13] Tan M, Chen B, Pang R, et al. MnasNet:Platform-aware neural architecture search for mobile[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2019:2820-2828.[14] Howard A G, Zhu M, Chen B, et al. MobileNets:Efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2021-05-12]. https://arxiv.org/abs/1704.04861.[15] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361.[16] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [17] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Conference on Computer Vision(ECCV), 2018:801-818.[18] 王俊强, 李建胜, 周华春, 等. 基于DeepLabv3+与CRF的遥感影像典型要素提取方法[J]. 计算机工程, 2019, 45(10):260-265,271.[18] Wang J Q, Li J S, Zhou H C, et al. Typical element extraction method of remote sensing image based on DeepLabv3+ and CRF[J]. Computer Engineering, 2019, 45(10):260-265,271.[19] 刘文祥, 舒远仲, 唐小敏, 等. 采用双注意力机制DeepLabv3+算法的遥感影像语义分割[J]. 热带地理, 2020, 40(2):303-313.[19] Liu W X, Shu Y Z, Tang X M, et al. Remote sensing image segmentation using dual attention mechanism DeepLabv3+ algorithm[J]. Tropical Geography, 2020, 40(2):303-313.[20] Sandler M, Howard A, Zhu M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:4510-4520.[21] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:1800-1807.[22] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9):1904-1916.[23] Ji S P, Wei S Q, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1):574-586. [24] Mnih V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013.
-
计量
- 文章访问数: 2145
- PDF下载数: 134
- 施引文献: 0