中国自然资源航空物探遥感中心主办
地质出版社出版

北美洲地表温度数据重建及时空变化分析

毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 2022. 北美洲地表温度数据重建及时空变化分析. 自然资源遥感, 34(4): 203-215. doi: 10.6046/zrzyyg.2021254
引用本文: 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 2022. 北美洲地表温度数据重建及时空变化分析. 自然资源遥感, 34(4): 203-215. doi: 10.6046/zrzyyg.2021254
MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. 2022. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America. Remote Sensing for Natural Resources, 34(4): 203-215. doi: 10.6046/zrzyyg.2021254
Citation: MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. 2022. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America. Remote Sensing for Natural Resources, 34(4): 203-215. doi: 10.6046/zrzyyg.2021254

北美洲地表温度数据重建及时空变化分析

  • 基金项目:

    国家重点研发计划国际合作项目“全球农业干旱监测研究”(2019YFE0127600)

    亚太空间合作组织(APSCO)框架项目“全球及重点区域干旱预报与监测”(20220714)

    风云卫星推进计划2022“风云全天候地表温度时空融合数据集的研制与应用”(2022070712)

    宁夏科技厅灵活引进人才项目“北斗+土壤水分和植被含水量监测仪器设备研发及应用”(2021RXTDLX14)

    中央公益事业单位基本科研业务费“高时空分辨率干旱监测关键参数土壤水分反演算法及应用研究”(1610132020014)

详细信息
    作者简介: 毛克彪(1977-),男,研究员,主要从事农业大数据、农业灾害遥感和粮食安全等方面的研究。Email: maokebiao@caas.cn
  • 中图分类号: TP79

Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America

  • 地表温度是反映区域自然环境和气候变化的重要指标,高质量的数据对区域地表温度时空变化研究是非常重要的。北美洲近年来的气候变化较为异常,因此研究分析该区域的地表温度具有较强的意义。文章基于MODIS地表温度数据,结合地面站点、邻近像元和海拔数据重建了北美洲2002—2018年的遥感地表温度数据集,并分析了其17 a的地表温度时空变化。重建的地表温度数据覆盖了所有陆地地表,数据验证表明精度在1 ℃左右。经过分析发现: 北美洲17 a间以平均0.02 ℃/a的速度呈现波动增温趋势并在2016年达到历史峰值,此后2 a里地表温度直线下降,这与厄尔尼诺的影响密切相关; 北美洲春秋两季的增温幅度较大,冬夏两季次之; 阿拉斯加北部地区和加利福尼亚半岛区域近年来的增温趋势极为显著; 植被和大气水汽显著地影响着地表温度的变化,40°N以北植被和大气水汽与地表温度呈正相关变化,40°N以南植被和大气水汽与地表温度呈负相关变化。根据北美洲平均地表温度周期波动的变化趋势以及厄尔尼诺的影响,在一定可靠程度上可以预测未来1~2 a整体地表温度变化趋势。
  • 加载中
  • [1]

    Anderson M C, Norman J M, Kustas W P, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon,water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112:4227-4241.

    [2]

    唐国利, 任国玉. 近百年中国地表气温变化趋势的再分析[J]. 气候与环境研究, 2005(4):791-798.

    [3]

    Tang G L, Ren G Y. Reanalysis of surface air temperature change of the last 100 years over China[J]. Climatic and Environmental Research, 2005(4):791-798.

    [4]

    Brunsell N A, Gillies R R. Length scale analysis of surface energy fluxes derived from remote sensing[J]. Journal of Hydrometeorology, 2003, 4(6):1212-1219.

    [5]

    毛克彪, 左志远, 朱高峰, 等. 全球气候和生态系统变化与星体轨道位置变化关系研究[J]. 高技术通讯, 2016, 26(11):890-899.

    [6]

    Mao K B, Zuo Z Y, Zhu G F, et al. Study of the relationship between global climate-ecosystem’s change and planetary orbit position’s change[J]. High Technology Letters, 2016, 26(11):890-899.

    [7]

    王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J]. 遥感学报, 2007(3):330-339.

    [8]

    Wang J K, Wang K C, Wang P C. Urban heat (or cool) island over Beijing from MODIS land surface temperature[J]. Journal of Remote Sensing, 2007(3):330-339.

    [9]

    Guo J, Mao K, Zhao Y, et al. Impact of climate on food security in Mainland China:A new perspective based on characteristics of major agricultural natural disasters and grain loss[J]. Sustainability, 2019, 869(11):1-25.

    [10]

    Hall D K, Williams R S, Luthcke S B, et al. Greenland ice sheet surface temperature,melt and mass loss:2000—06[J]. Journal of Glaciology, 2008, 54(184):81-93.

    [11]

    Xia L, Zhao F, Mao K, et al. SPI-based analyses of drought changes over the past 60 years in China’s major crop-growing areas[J]. Remote Sensing, 2018, 171(10):1-15.

    [12]

    Westerling A L. Warming and earlier spring increase western U.S.forest wildfire activity[J]. Science, 2006, 313(5789):940-943.

    [13]

    Ouzounov D, Freund F T. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 2004, 33(3):268-273.

    [14]

    任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 6:942-956.

    [15]

    Ren G Y, Guo J, Xu M Z, et al. Climate change of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 6:942-956.

    [16]

    Zhao B, Mao K, Cai Y, et al. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003—2017[J]. Earth System Science Data, 2020, 12:2555-2577.

    [17]

    Mao K, Ma Y, Tan X, et al. Global surface temperature change analysis based on MODIS data in recent twelve years[J]. Advance Space Research, 2017, 59:503-512.

    [18]

    Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.

    [19]

    Shen H, Li X, Cheng Q, et al. Missing information reconstruction of remote sensing data:A technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):61-85.

    [20]

    Zhao L, Jin J, Wang S Y, et al. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J]. Journal of Geophysical Research Atmospheres, 2012, 117(d9):1-12.

    [21]

    Mao K, Ma Y, Xia L, et al. Global aerosol change in the last decade:An analysis based on MODIS data[J]. Atmospheric Environment, 2014, 94:680-686.

    [22]

    Cao M, Mao K, Yan Y, et al. A new global gridded sea surface temperature data product based on multisource data[J]. Earth System Science Data, 2021, 13:2111-2134.

    [23]

    Kerr Y H, Lagouarde J P, Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm[J]. Remote Sensing of Environment, 1992, 41:197-209.

    [24]

    Mao K, Shi J, Li Z, et al. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data[J]. Journal of Geophysical Research-Atmosphere, 2007, 112(d21):1-17.

    [25]

    Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5:424-430.

    [26]

    Halliday W E D. Climate,soils and forests of Canada[J]. Forestry Chronicle, 1950, 26:287-301.

    [27]

    Mao K, Qin Z, Shi J, et al. A practical split-window algorithm for retrieving land surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26:3181-3204.

    [28]

    Mao K, Shi J, Tang J, et al. A neural network technique for separating land surface emissivity and temperature from ASTER imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):200-208.

    [29]

    Xia L, Mao K, Ma Y, et al. An algorithm for retrieving land surface temperature using VIIRS data in combination with multi-sensors[J]. Sensors, 2014, 14:21385-21408.

    [30]

    Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4):892-905.

    [31]

    Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):980-996.

    [32]

    Fang S, Mao K, Xia X, et al. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14:1413-1432.

    [33]

    Wang P, Mao K, Meng F, et al. A daily highest air temperature estimation method and spatial-temporal changes analysis of high temperature in China from 1979 to 2018[J]. Geoscientific Model Development, 2022, 15:6059-6083.

    [34]

    Hansen J, Lebedeff S. Global trends of measured surface air temperature[J]. Journal of Geophysical Research Atmospheres, 1987, 92(d11):13345-13372.

    [35]

    Julien Y, Sobrino J A, Verhoef W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sensing of Environment, 2006, 103(1):43-55.

    [36]

    Wang H, Mao K, Yuan Z, et al. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning[J]. Remote Sensing of Environment, 2021, 265:1-19.

    [37]

    Remer L A, Kleidman R G, Levy R C, et al. Global aerosol climatology from the MODIS satellite sensors[J]. Journal of Geophysical Research, 2008, 113(d14):1-18.

    [38]

    Platnick S. The MODIS cloud products:Algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):459-473.

    [39]

    Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699.

    [40]

    Mao K, Yuan Z, Zuo Z, et al. Changes in global cloud cover based on remote sensing data from 2003 to 2012[J], Chinese Geographical Science, 2019, 29(2):306-315.

    [41]

    Yan Y, Mao K, Shi J, et al. Driving forces of land surface temperature anomalous changes in North America in 2002—2018[J]. Scientific Reports, 2020, 6931(10):1-13.

    [42]

    Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in Northern Alaska and other arctic regions[J]. Climatic Change, 2005, 72(3):251-298.

  • 加载中
计量
  • 文章访问数:  572
  • PDF下载数:  108
  • 施引文献:  0
出版历程
收稿日期:  2021-08-16
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录