中国自然资源航空物探遥感中心主办
地质出版社出版

基于真实感场景影像的天陇铁路勘察遥感解译与分析

刘亚林. 2022. 基于真实感场景影像的天陇铁路勘察遥感解译与分析. 自然资源遥感, 34(3): 227-234. doi: 10.6046/zrzyyg.2021308
引用本文: 刘亚林. 2022. 基于真实感场景影像的天陇铁路勘察遥感解译与分析. 自然资源遥感, 34(3): 227-234. doi: 10.6046/zrzyyg.2021308
LIU Yalin. 2022. Remote sensing interpretation and analysis of the survey of the Tianshui-Longnan Railway based on realistic scene images. Remote Sensing for Natural Resources, 34(3): 227-234. doi: 10.6046/zrzyyg.2021308
Citation: LIU Yalin. 2022. Remote sensing interpretation and analysis of the survey of the Tianshui-Longnan Railway based on realistic scene images. Remote Sensing for Natural Resources, 34(3): 227-234. doi: 10.6046/zrzyyg.2021308

基于真实感场景影像的天陇铁路勘察遥感解译与分析

  • 基金项目:

    中铁第一勘察设计院集团有限公司重点专项研发项目“铁路智能勘测及数据管理关键技术研究”(2021KY73ZD(ZDZX)-1)

详细信息
    作者简介: 刘亚林(1982-),男,硕士,高级工程师,主要从事遥感技术应用研究。Email: lynn6100@126.com
  • 中图分类号: TP79

Remote sensing interpretation and analysis of the survey of the Tianshui-Longnan Railway based on realistic scene images

  • 天陇铁路作为甘肃省委省政府“巩固东连、向西为主,深耕南向、促进北拓”发展战略的重要保障工程,两次翻越秦岭山脉,由北至南途经黄土梁峁沟壑区、天水—西礼盆地中山区、秦岭中山区等3个特征迥异地貌单元,地质构造背景复杂,区域新生代构造活动强烈,沿线存在大规模滑坡群、全新世活动断裂、岩溶塌陷等环境地质问题,严重制约了前期线路方案设计,并影响后期铁路施工运营的安全稳定。该研究充分利用实测航飞遥感数据,通过真实感场景高精度立体影像及正射影像对全线各类地质问题开展了详细的解译分析,结合现场调查资料,对其范围、规模、稳定性以及可能对线路方案产生的影响进行了评价,研究成果为线路方案设计及外业地质勘察提供了有力的遥感技术支撑。
  • 加载中
  • [1]

    卓宝熙, 甄春相. 遥感技术在铁路工程地质勘察中的应用[J]. 铁道工程学报, 2005, 12(s1):398-406.

    [2]

    Zhuo B X, Zhen C X. Application of remote sensing technology in the railway engineering geology[J]. Journal of Railway Engineering Society, 2005, 12(s1):398-406.

    [3]

    贾伟洁, 王治华. 基于高分辨率遥感影像的滑坡活动特征及稳定性分析——以东苗家滑坡为例[J]. 国土资源遥感, 2019, 31(4):174-181.doi: 10.6046/gtzyyg.2019.04.23.

    [4]

    Jia W J, Wang Z H. Landslide activity characteristics and stability analysis based on high-resolution remote sensing image:A case study of Dongmiaojia landslide[J]. Remote Sensing for Land and Resources, 2019, 31(4):174-181.doi: 10.6046/gtzyyg.2019.04.23.

    [5]

    夏涛, 杨武年, 马安青. 遥感影像三维可视化在岩溶漏斗解译中的应用[J]. 测绘科学, 2009(6):266-267.

    [6]

    Xia T, Yang W N, Ma A Q. Application of 3D visualization of remote sensing images in doline interpretation[J]. Science of Surveying and Mapping, 2009(6):266-267.

    [7]

    赵卫东, 郑勇, 章浩南, 等. 基于多源数据的郯庐断裂带安徽段遥感解译及其空间分布特征[J]. 国土资源遥感, 2019, 31(4):79-87.doi: 10.6046/gtzyyg.2019.04.11.

    [8]

    Zhao W D, Zhen Y, Zhang H N, et al. Remote sensing interpretation and spatial distribution characteristics of the Anhui segment of Tanlu fault zone based on multi-source data[J]. Remote Sensing for Landand Resources, 2019, 31(4):79-87.doi: 10.6046/gtzyyg.2019.04.11.

    [9]

    刘亚林. 多源遥感技术在铁路工程地质勘察中的应用研究[J]. 铁道标准设计, 2013(5):13-15.

    [10]

    Liu Y L. Application research of multisource remote sensing technology in railway geological surveying[J]. Railway Standard Design, 2013(5):13-15.

    [11]

    张占忠. 铁路大场景立体影像模型制作关键技术及应用[J]. 铁道工程学报, 2020, 37(4):11-16.

    [12]

    Zhang Z Z. Key Technologies for making large scene stereo model and its application in railway survey and design[J]. Journal of Railway Engineering Society, 2020, 37(4):11-16.

    [13]

    吕慧玲. 真实感场景模型制作工艺及质量控制方法[J]. 铁道标准设计, 2016(9):28-31.

    [14]

    Lyu H L. Workmanship and quality control of realistic scene model[J]. Railway Standard Design, 2016(9):28-31.

    [15]

    孟祥连, 周福军. 真实感场景遥感技术在铁路工程勘察中的应用[J]. 西南交通大学学报, 2017, 52(5):949-955.

    [16]

    Meng X L, Zhou F J. Application of railway engineering survey based on remote sensing technology for realistic scenes[J]. Journal of Southwest Jiaotong University, 2017, 52(5):949-955.

    [17]

    田尤, 杨为民, 黄晓, 等. 天水市麦积区幅黄土滑坡发育分布特征及其孕灾因素分析[J]. 地质力学学报, 2016, 22(1):25-38.

    [18]

    Tian Y, Yang W M, Huang X, et al. Distribution characteristics and inducing factors of loess landslide in Maiji mappablen unit,Tianshui[J]. Journal of Geomechanics, 2016, 22(1):25-38.

    [19]

    王志才, 张培震, 张广良, 等. 西秦岭北缘构造带的新生代构造活动——兼论对青藏高原东北缘形成过程的指示意义[J]. 地学前缘, 2006, 13(4):119-135.

    [20]

    Wang Z C, Zhang P Z, Zhang G L, et al. Tertiary tectonic activities of the north frontal fault zone of the west Qinling Mountains:Implications for the growth of the northeastern margin of the Qinghai-Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4):119-135.

    [21]

    杨晓平, 冯希杰, 黄雄南, 等. 礼县—罗家堡断裂晚第四纪活动特征:兼论1654年礼县8级地震孕震机制[J]. 地球物理学报, 2015, 58(2):504-519.

    [22]

    Yang X P, Feng X J, Huang X N, et al. The late quaternary activity characteristics of the Lixian-Luojiabu fault:A discussion on the seismogenic mechanism of the Lixian M8 earthquake in 1654[J]. Chinese Journal of Geophysics, 2015, 58(2):504-519.

    [23]

    陈鹏. 西秦岭地区晚新生代构造演化[D]. 北京: 中国地质科学院, 2016.

    [24]

    Chen P. Late cenozoic tectonic evolution in the west Qinling areasa case study of Tianshui basin[D]. Beijing: Chinese Academy of Geological Sciences, 2016.

    [25]

    贾伟. 康县—武都断裂新活动性及其地震危险性研究[D]. 兰州: 中国地震局兰州地震研究所, 2012.

    [26]

    Jia W. Activity on Kangxian-Wudu fault zone and its’seismic hazard assessment[D]. Lanzhou: Lanzhou Institute of Seismology,CEA, 2012.

    [27]

    张帅, 孙萍, 邵铁全, 等. 甘肃天水黄土梁峁区强震诱发滑坡特征研究[J]. 工程地质学报, 2016, 24(4):519-526.

    [28]

    Zhang S, Sun P, Shao T Q, et al. Earthquake-Triggered landslides in Tianshui loess hilly region,Gansu Province,China[J]. Journal of Engineering Geology, 2016, 24(4):519-526.

    [29]

    匡永生. 秦安—天水地区新生代盆地沉积演化[D]. 兰州: 兰州大学, 2007.

    [30]

    Kuang Y S. The depositional evolution of neozoic basin in Tianshui-Qin’an area[D]. Lanzhou: Lanzhou University, 2007.

  • 加载中
计量
  • 文章访问数:  327
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2021-09-27
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录