中国自然资源航空物探遥感中心主办
地质出版社出版

基于时空谱特征的遥感影像时间序列变化检测

秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 2022. 基于时空谱特征的遥感影像时间序列变化检测. 自然资源遥感, 34(4): 105-112. doi: 10.6046/zrzyyg.2021351
引用本文: 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 2022. 基于时空谱特征的遥感影像时间序列变化检测. 自然资源遥感, 34(4): 105-112. doi: 10.6046/zrzyyg.2021351
QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. 2022. Change detection of satellite time series images based on spatial-temporal-spectral features. Remote Sensing for Natural Resources, 34(4): 105-112. doi: 10.6046/zrzyyg.2021351
Citation: QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. 2022. Change detection of satellite time series images based on spatial-temporal-spectral features. Remote Sensing for Natural Resources, 34(4): 105-112. doi: 10.6046/zrzyyg.2021351

基于时空谱特征的遥感影像时间序列变化检测

  • 基金项目:

    国家自然科学基金项目“基于偏振反射与光谱不变量的植被氮含量遥感反演”(41801227)

    湖南省自然科学基金项目“基于随机辐射传输理论的农作物叶面积指数和叶绿素含量遥感反演”(2019JJ50047)

详细信息
    作者简介: 秦 乐(1997-),男,硕士研究生,研究方向为遥感影像时间序列的变化检测。Email: hnuqinle@hnu.edu.cn
  • 中图分类号: TP79

Change detection of satellite time series images based on spatial-temporal-spectral features

  • 相较于常见的双时相遥感影像,时间序列遥感影像包含更丰富的地表信息,能够缓解“异物同谱”、“同物异谱”的影响,因而在变化检测中具有重要作用。但是目前时间序列遥感影像变化检测方法大多基于像素展开,忽略了像素和周围环境的空间关系,导致变化检测结果“噪声”现象明显。基于此,提出了一种基于时空谱特征的时间序列遥感变化检测算法(change detection based on spatial-temporal-spectral features, CDSTS)。首先,利用灰度共生矩阵和局部统计计算方法,从Landsat时间序列遥感影像中提取每个像素点的时间、空间(纹理和统计)和光谱特征; 其次,通过每个像素在不同波段上的时间序列表现规律,自动筛选出时序特征异常点,并与连续变化检测和分类法(continuous change detection and classification, CCDC)检测结果融合获取高精度变化/未变化训练样本点; 最后,利用上述样本点及其对应的时空谱特征训练支持向量机分类器,并基于该分类器对全图进行分类。结果表明,CDSTS算法在变化区域检测精准度方面明显优于常用的时间序列变化检测算法CCDC和土地扰动连续监测方法(continuous monitoring of land disturbance,COLD),总体精度提升了4.8~11.7百分点。
  • 加载中
  • [1]

    Singh A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003.

    [2]

    Silveira E M O, Bueno I T, Acerbi-Junior F W, et al. Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from Landsat time series[J]. Remote Sensing, 2018, 10(6):808.

    [3]

    Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72.

    [4]

    Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80:91-106.

    [5]

    Roy D P, Wulder M A, Loveland T R, et al. Landsat8:Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145:154-172.

    [6]

    Zhu Z, Woodcock C E, Holden C, et al. Generating synthetic Landsat images based on all available Landsat data:Predicting Landsat surface reflectance at any given time[J]. Remote Sensing of Environment, 2015, 162:67-83.

    [7]

    张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.

    [8]

    Zhang L P, Wu C. The status quo and prospects of multi-temporal remote sensing image change detection[J]. Journal of Surveying and Mapping, 2017, 46(10):1447-1459.

    [9]

    王志有, 李欢, 刘自增, 等. 基于深度学习算法的卫星影像变化监测[J]. 计算机系统应用, 2020, 29(1):40-48.

    [10]

    Wang Z Y, Li H, Liu Z Z, et al. Satellite image change monitoring based on deep learning algorithm[J]. Computer System Applications, 2020, 29(1):40-48.

    [11]

    Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.

    [12]

    Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.

    [13]

    Gong M G, Zhan T, Zhang P Z, et al. Superpixel-based difference representation learning for change detection in multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote sensing, 2017, 55(5):2658-2673.

    [14]

    Zhang P Z, Gong M G, Su L Z, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:24-41.

    [15]

    Woodcock C E, Loveland T R, Herold M, et al. Transitioning from change detection to monitoring with remote sensing:A paradigm shift[J]. Remote Sensing of Environment, 2020, 238:111558.

    [16]

    Hamunyela E, Brandt P, Shirima D, et al. Space-time detection of deforestation,forest degradation and regeneration in montane forests of eastern Tanzania[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102063.

    [17]

    Liu C, Zhang Q, Luo H, et al. An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks[J]. Remote Sensing of Environment, 2019, 229:114-132.

    [18]

    Wang Z H, Yao W Y, Tang Q H, et al. Continuous change detection of forest/grassland and cropland in the Loess Plateau of China using all available Landsat data[J]. Remote Sensing, 2018, 10(11):1775.

    [19]

    Xiao P F, Zhang X L, Wang D G, et al. Change detection of built-up land:A framework of combining pixel-based detection and object-based recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:402-414.

    [20]

    杜培军, 柳思聪. 融合多特征的遥感影像变化检测[J]. 遥感学报, 2012, 16(4):663-677.

    [21]

    Du P J, Liu S C. Remote sensing image change detection based on multi-feature fusion[J]. Journal of Remote Sensing, 2012, 16(4):663-677.

    [22]

    Zhu Z. Change detection using landsat time series:A review offrequencies,preprocessing,algorithms,and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:370-384.

    [23]

    Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.

    [24]

    Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1):183-198.

    [25]

    Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012, 123:98-108.

    [26]

    Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2013, 144(1):152-171.

    [27]

    Zhu Z, Zhang J, Yang Z, et al. Continuous monitoring of land disturbance based on Landsat time series[J]. Remote Sensing of Environment, 2020, 238:111116.

    [28]

    Zhang H, Gong M G, Zhang P Z, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670.

    [29]

    Chen G, Hay G J, Carvalho L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33(14):4434-4457.

  • 加载中
计量
  • 文章访问数:  1048
  • PDF下载数:  109
  • 施引文献:  0
出版历程
收稿日期:  2021-10-21
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录