中国自然资源航空物探遥感中心主办
地质出版社出版

基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例

张昊, 高小红, 史飞飞, 李润祥. 2022. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例. 自然资源遥感, 34(4): 144-154. doi: 10.6046/zrzyyg.2021385
引用本文: 张昊, 高小红, 史飞飞, 李润祥. 2022. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例. 自然资源遥感, 34(4): 144-154. doi: 10.6046/zrzyyg.2021385
ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. 2022. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai. Remote Sensing for Natural Resources, 34(4): 144-154. doi: 10.6046/zrzyyg.2021385
Citation: ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. 2022. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai. Remote Sensing for Natural Resources, 34(4): 144-154. doi: 10.6046/zrzyyg.2021385

基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例

  • 基金项目:

    青海省自然科学基金项目“基于GEE云平台与Landsat卫星长时间序列数据的湟水流域30多年土地利用/土地覆被时空变化研究”(2021-ZJ-913)

详细信息
    作者简介: 张 昊(1998-),男,硕士研究生,研究方向为遥感应用与地理空间数据分析。Email: 15959785022@163.com
  • 中图分类号: TP79

Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai

  • 青海东部农业区地处黄土高原向青藏高原的过渡地带,黄土丘陵地貌类型多样、地形起伏大、破碎。随着近几十年来城市化进程的加快,农村可用劳动力缺失导致土地撂荒现象日益严重,因此掌握东部农业区撂荒地分布状况,对保护耕地与生态用地至关重要。本研究基于GEE云平台,以青海民和县为案例,依据农作物的物候特征,选取种植期和成熟期2季的Sentinel-2 MSI与Sentinel-1 SAR卫星影像为主要数据源,以DEM为辅助,结合光谱、地形、极化与缨帽特征,采用随机森林方法对研究区2018—2020年土地覆被进行自动分类,获取了研究区3 a的土地覆被数据,在此基础上借助撂荒地判断规则建立决策树提取撂荒地并进行验证。研究结果表明: 2018年、2019年及2020年土地覆被总体分类精度分别为86.93%,87.36%和88.54%; 2020年民和县撂荒地面积为43.17 km2,占总面积的2.28%; 撂荒地主要分布在海拔为2 200~2 600 m范围、坡度为6°~25°范围、坡向为阴坡的区域。Sentinel-1 SAR影像极化特征结合到Sentinel-2 MSI多季相数据中,能够有效提高黄土丘陵地形区土地覆被分类精度,获得较为准确的撂荒地信息。该研究为类似地形区域进行撂荒地提取提供了方法参考和借鉴。
  • 加载中
  • [1]

    陈欣怡, 郑国全. 国内外耕地撂荒研究进展[J]. 中国人口·资源与环境, 2018, 28(s2):37-41.

    [2]

    Chen X Y, Zheng G Q. Research progress on arable land abandonment in China and abroad[J]. China Population,Resources and Environment, 2018, 28(s2):37-41.

    [3]

    段亚明, 周洪, 刘秀华, 等. 中国耕地撂荒的研究进展与展望[J]. 江苏农业科学, 2018, 46(13):13-17.

    [4]

    Duan Y M, Zhou H, Liu X H, et al. Research progress and prospect of abandonment of China’s cultivated land[J]. Jiangsu Agricultural Sciences, 2018, 46(13):13-17.

    [5]

    朱长明, 骆剑承, 沈占锋, 等. 基于地块特征基元与多时相遥感数据的冬小麦播种面积快速提取[J]. 农业工程学报, 2011, 27(9):94-99.

    [6]

    Zhu C M, Luo J C, Shen Z F, et al. Winter wheat planting area extraction using multi-temporal remote sensing data based on filed parcel characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9):94-99.

    [7]

    陈彦四, 黄春林, 侯金亮, 等. 基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J]. 遥感技术与应用, 2021, 36(2):324-331.

    [8]

    Chen Y S, Huang C L, Hou J L, et al. Extraction of maize planting area based on multi-temporal Sentinel-2 imagery in the middle reaches of Heihe River[J]. Remote Sensing Technology and Application, 2021, 36(2):324-331.

    [9]

    宋宏利, 雷海梅, 尚明. 基于Sentinel 2A/B时序数据的黑龙港流域主要农作物分类[J]. 江苏农业学报, 2021, 37(1):83-92.

    [10]

    Song H L, Lei H M, Shang M. Crop classification based on Sentinel 2A/B time series data in Heilonggang River basin[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1):83-92.

    [11]

    薛娟, 俞琳锋, 林起楠, 等. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018, 30(4):108-114.doi:10.6046/gtzyyg.2018.04.17.

    [12]

    Xue J, Yu L F, Lin Q N, et al. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forests[J]. Remote Sensing for Land and Resources, 2018, 30(4):108-114.doi:10.6046/gtzyyg.2018.04.17.

    [13]

    肖国峰, 朱秀芳, 侯陈瑶, 等. 撂荒耕地的提取与分析——以山东省庆云县和无棣县为例[J]. 地理学报, 2018, 73(9):1658-1673.

    [14]

    Xiao G F, Zhu X F, Hou C Y, et al. Extraction and analysis of abandoned farmland:A case study of Qingyun and Wudi counties in Shandong Province[J]. Acta Geographica Sinica, 2018, 73(9):1658-1673.

    [15]

    Wu M H, Hu Y M, Wang H M, et al. Remote sensing extraction and feature analysis of abandoned farmland in hilly and mountainous areas:A case study of Xingning,Guangdong[J]. Remote Sensing Applications:Society and Environment, 2020, 20:100403.

    [16]

    田颖, 陈卓奇, 惠凤鸣, 等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1):57-65.

    [17]

    Tian Y, Chen Z Q, Hui F M, et al. ESAS Sentinel-2A/B satellite:Characteristics and applications[J]. Journal of Beijing Normal University(Natural Science), 2019, 55(1):57-65.

    [18]

    杨通, 郭旭东, 邱德鹏, 等. 基于联合变化检测的耕地撂荒信息提取与驱动因素分析[J]. 农业机械学报, 2019, 50(6):201-208.

    [19]

    Yang T, Guo X D, Qiu D P, et al. Information extraction and driving factor assessment of farmland abandonment based on joint change detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6):201-208.

    [20]

    He S, Shao H Y, Xian W, et al. Extraction of abandoned land in hilly areas based on the spatio-temporal fusion of multi-source remote sensing images[J]. Remote Sensing, 2021, 13(19):3956.

    [21]

    王红岩, 汪晓帆, 高亮, 等. 基于季相变化特征的撂荒地遥感提取方法研究[J]. 遥感技术与应用, 2020, 35(3):596-605.

    [22]

    Wang H Y, Wang X F, Gao L, et al. Study on extraction method of abandoned farmland based on the seasonal variation characteristics of remotely sensed images[J]. Remote Sensing Technology and Application, 2020, 35(3):596-605.

    [23]

    马引弟, 吴静, 李纯斌, 等. 基于Sentinel-2影像数据的耕地撂荒信息提取——以甘肃省天水市八里湾镇为例[J]. 生产力研究, 2020(5):61-64.

    [24]

    Ma Y D, Wu J, Li C B, et al. Cultivated land abandonment information extraction based on Sentinel-2 image data:Taking Baliwan Town,Tianshui City,Gansu Province as an example[J]. Productivity Research, 2020(5):61-64.

    [25]

    Zeng H W, Wu B F, Wang S, et al. A synthesizing land-cover classification method based on Google Earth Engine:A case study in Nzhelele and Levhuvu Catchments,South Africa[J]. Chinese Geographical Science, 2020, 30(3):13.

    [26]

    Gomez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72.

    [27]

    马慧娟, 高小红, 谷晓天. 随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J]. 地球信息科学学报, 2019, 21(3):359-371.

    [28]

    Ma H J, Gao X H, Gu X T. Random forest classification of Landsat8 imagery for the complex terrain area based on the combination of spectral,topographic and texture information[J]. Journal of Geo-Information Science, 2019, 21(3):359-371.

    [29]

    张晓羽, 李凤日, 甄贞, 等. 基于随机森林模型的陆地卫星-8遥感影像森林植被分类[J]. 东北林业大学学报, 2016, 44(6):53-57,74.

    [30]

    Zhang X Y, Li F R, Zhen Z, et al. Forest vegetation classification of Landsat-8 remote sensing image based on random forests model[J]. Journal of Northeast Forestry University, 2016, 44(6):53-57,74.

    [31]

    胡云锋, 商令杰, 张千力, 等. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4):573-583.

    [32]

    Hu Y F, Shang L J, Zhang Q L, et al. Land change patterns and driving mechanism Beijing since 1990 based on GEE platform[J]. Remote Sensing Technology and Application, 2018, 33(4):573-583.

    [33]

    Souverijns N, Buchhorn M, Horion S, et al. Thirty years of land cover and fraction cover changes over the Sudano-Sahel using Landsat time series[J]. Remote Sensing, 2020, 12(22):3817.

    [34]

    邹大伟, 李孝玲, 康瑞存, 等. 基于Google Earth Engine的土地覆盖分类方法研究[J]. 测绘与空间地理信息, 2021, 44(s1):100-102,105,109.

    [35]

    Zhou D W, Li X L, Kang R C, et al. Research on land cover classification method based on Google Earth Engine[J]. Geomatics and Spatial Information Technology, 2021, 44(s1):100-102,105,109.

    [36]

    李文婕, 焦仕军, 李荣. 气候变化对民和县冬小麦的影响分析[J]. 青海农林科技, 2018(4):6-11.

    [37]

    Li W J, Jiao S J, Li R. Effects of climate change on winter wheat in Minhe Count[J]. Science and Technology of Qinghai Agriculture and Forestry, 2018(4):6-11.

    [38]

    牟晓莉, 李贺, 黄翀, 等. Google Earth Engine在土地覆被遥感信息提取中的研究进展[J]. 国土资源遥感, 2021, 33(2):1-10.doi:10.6046/gtzyyg.2020189.

    [39]

    Mou X L, Li H, Huang C, et al. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land and Resources, 2021, 33(2):1-10.doi:10.6046/gtzyyg.2020189.

    [40]

    Hu Y, Xu X L, Wu F Y, et al. Estimating forest stock volume in Hunan Province,China,by integrating in situ plot data,Sentinel-2 images,and linear and machine learning regression models[J]. Remote Sensing, 2020, 12(1):186.

    [41]

    Ion S, Alberto G M, Leire S P, et al. Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:63-76.

    [42]

    方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.

    [43]

    Fang K N, Wu J B, Zhu J P, et al. A review of technologies on random forests[J]. Journal of Statistics and Information, 2011, 26(3):32-38.

    [44]

    吴宏安, 蒋建军, 张海龙, 等. 比值居民地指数在城镇信息提取中的应用[J]. 南京师大学报(自然科学版), 2006, 29(3):118-121.

    [45]

    Wu H A, Jiang J J, Zhang H L, et al. Application of ratio resident-area index to retrieve urban residential areas based on Landsat TM data[J]. Journal of Nanjing Normal University(Natural Science Edition), 2006, 29(3):118-121.

    [46]

    王正兴, 刘闯, Alfredo H. 植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 2003(5):979-987.

    [47]

    Wang Z X, Liu C, Alfredo H. From AVHRR-NDVI to MODIS-EVI:Advances in vegetation index research[J]. Acta Ecologica Sinica, 2003(5):979-987.

    [48]

    徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005(5):589-595.

    [49]

    Xu H Q. A study on information extraction of water body with the modified normalized difference water index(MNDWI)[J]. National Remote Sensing Bulletin, 2005(5):589-595.

    [50]

    Belcore E, Piras M, Wozniak E. Specific alpine environment land cover classification methodology:Google Earth Engine processing for Sentinel-2 data[J]. The International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, 43:663-670.

    [51]

    高程程, 惠晓威. 基于灰度共生矩阵的纹理特征提取[J]. 计算机系统应用, 2010, 19(6):195-198.

    [52]

    Gao C C, Hui X W. GLCM-based texture feature extraction[J]. Computer Systems Applications, 2010, 19(6):195-198.

    [53]

    Nedkov R. Orthogonal transformation of segmented images from the satellite Sentinel-2[J]. Comptes Rendus de l’Academie Bulgare des Sciences, 2017, 70(5):687-692.

    [54]

    史铁丑, 徐晓红. 重庆市典型县撂荒耕地图斑的提取与验证[J]. 农业工程学报, 2016, 32(24):261-267.

    [55]

    Shi T C, Xu X H. Extraction and validation of abandoned farmland parcel in typical counties of Chongqing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24):261-267.

    [56]

    王德军, 姜琦刚, 李远华, 等. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.

    [57]

    Wang D J, Jiang Q G, Li Y H, et al. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land and Resources, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.

    [58]

    刘智丽, 张启斌, 岳德鹏, 等. 基于Sentinel-2A与NPP-VIIRS夜间灯光数据的城市建成区提取[J]. 国土资源遥感, 2019, 31(4):227-234.doi:10.6046/gtzyyg.2019.04.29.

    [59]

    Liu Z L, Zhang Q B, Yue D P, et al. Extraction of urban built-up areas based on Sentinel-2A and NPP-VIIRS nighttime light data[J]. Remote Sensing for Land and Resources, 2019, 31(4):227-234.doi:10.6046/gtzyyg.2019.04.29.

    [60]

    王华, 杨乾鹏, 田云杰, 等. 基于多时相Landsat影像的中亚地区植被覆盖遥感监测[J]. 干旱区地理, 2020, 43(4):1023-1032.

    [61]

    Wang H, Yang Q P, Tian Y J, et al. Vegetation coverage monitoring in the Central Asian countries using multi-temporal Landsat images[J]. Arid Land Geography, 2020, 43(4):1023-1032.

    [62]

    Ghorbanian A, Zaghian S, Asiyabi R M, et al. Mangrove ecosystem mapping using Sentinel-1 and Sentinel-2 satellite images and random forest algorithm in Google Earth Engine[J]. Remote Sensing, 2021, 13(13):2565.

  • 加载中
计量
  • 文章访问数:  501
  • PDF下载数:  86
  • 施引文献:  0
出版历程
收稿日期:  2021-11-16
修回日期:  2022-12-15
刊出日期:  2022-12-27

目录